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Abstract

Testing is an important activity in the development of (software) systems. This thesis presents
an extension of the Generic Code Generator to support the generation of JUnit test-harnesses. It
shows the design of a generic test suite and how such a test suite can automatically be generated
from a given UML class diagram of the system. Because class diagrams only contain the structure
of a system but not the semantics of its interfaces, this also includes a translation of OCL contracts
to Java code. The generated code verifies such constraints and makes use of the Dresden OCL
Standard Library.
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1 Introduction

1.1 Motivation

Software engineering increasingly depends on tools which ease and support the development pro-
cess. The process itself consists of different phases each of which requires a different set of tools:
Requirements engineering and design are often done with the help of CASE-tools such as Argo-
UML [17], the actual implementation is supported by modern integrated development environ-
ments such as Eclipse [6] and the verification may rely upon unit testing frameworks such as
JUnit [7].

To assist a security-aware development, the Information Security Group of the Computer Sci-
ence Department at the ETH Zurich is developing a UML-based tool-chain which supports access
control specifications using SecureUML, formal analysis with HOL-OCL and automatic code gen-
eration. See Figure 1.1 for an overview of the tool-chain.

CASE-Tool Dresden-OCL UML Repository (su4sml) HOL-OCL

Generic Code Generator

Java Cartridge

Java Generator

Java Templates

JUnit Cartridge

JUnit Generator

JUnit Template

C# Cartridge

C# Generator

C# Templates

generated C# Codegenerated Java Code generated JUnit Test Harnesses

XMI (SecureUML + OCL)

Figure 1.1: Overview of the tool-chain

As automatic code generation does not generate the complete implementation of a system, fail-
ures may exist in the final system even if the model was provably correct because a programmer
may have introduced faults. Then again, even a complete and automatic generation of an imple-
mentation may exhibit failures when run on a real system. One way to find failures is software
testing and because testing generally plays an important role in the development of software sys-
tems, the automatic generation of test-harnesses is a sensible extension of the tool-chain. Such
an extension is also expedient as test-harnesses for different projects and unit tests for different
classes often share a similar structure and since it bridges the design and the validation and verifi-
cation phase of the development process: Some constraints which have been defined on the model
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1 Introduction

by using, for example, OCL may automatically be leveraged for the use in unit tests. On the
other hand, the structure of the system as specified in the model can be reflected in automatically
generated skeletons of unit tests which should be completed by the programmer and may already
contain constraint checking code. Figure 1.1 also shows where the aforementioned extension, which
is presented in this thesis, fits into the tool-chain.

1.2 Background

1.2.1 Modeling

The design process that is used when a new system is built normally starts with the construction
of an abstract model of this new system. A widely used language to model software systems is the
Unified Modeling Language (UML). It provides several diagram types to model different aspects
of the system: Structure diagrams such as class diagrams are used to model the structure of the
system whereas behaviour diagrams like state machine diagrams and interaction diagrams such
as sequence diagrams are used to model the dynamic behaviour. An example of a simple class
diagram may be found in Figure 1.2: It shows a package university with three classes where
Professor and Student are specialisations of the Person class. All the classes contain private fields
which store the state of the object and several public methods which allow other objects to modify
or query the current state.

university

Person
name:String
address:String
birthdate:Date
getAge():int
getName():String
setName(name:String):void

Student
id:String
getId():String
setId(id:String):void

Professor
office:String
getOffice():String
setOffice(office:String):void

Figure 1.2: Example of a class diagram

Object Constraint Language

Class diagrams do not contain any explicit information about the semantics of the operations of
the modelled classes. Such interface specifications may be added by using the Object Constraint
Language (OCL) [12] which is a declarative language for the description of rules which apply to
UML models. OCL can be used to specify pre- and postconditions of operations and invariants of
classes – see Listing 1.1 for an example of such contracts for the classes of Figure 1.2.

1.2.2 Unit Testing

In the context of object oriented programming, the unit of programming elements is a class. Unit
tests are testing the interface of a unit by comparing the actual to the intended behaviour. This
can only find failures but not faults. Tests nevertheless might give an indication of where one
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1.2 Background

package university

2 context Person

inv fields_nonnull: self.birthdate ->notEmpty () and

4 self.name ->notEmpty () and

self.address ->notEmpty ()

6

context Person :: getAge ():Integer

8 post positive_age: result >= 0

10 context Person :: setName(name:String):void

pre name_given: name ->notEmpty ()

12 post name_set: self.name = name

14 context Student

inv id_nonnull: self.id ->notEmpty ()

16

-- context Professor ...

18 endpackage

Listing 1.1: An OCL example

has to look for the actual fault which was the cause of the failure, therefore they are important
during the implementation and the validation phase. In addition, a thorough test suite, which
is a collection of unit tests, can provide a good sense for the overall quality of the code. It may
as well simplify and endorse changes to existing code since the changed code can easily be tested
for regressions. A good test is also executable without any interaction which allows for a fully
automatic run of the whole test suite after every build of the software system.

A test-harness is a collection of software and test data which is prepared for the execution of
unit tests. The software in this case is a unit testing framework, such as JUnit, which is used by
the actual unit tests and the test data is often directly written into those unit tests but could also
be provided separately, which simplifies modifications.

JUnit

JUnit [7] is presumably the most famous unit testing framework for Java and was written by
Erich Gamma and Kent Beck. It originates from Kent Beck’s SUnit [2] for Smalltalk which is the
original source for a whole family of unit testing frameworks collectively known as xUnit [21]. For
an example of a simple JUnit test, see Listing 1.2. JUnit 4 provides, among others, the following
facilities:

• Several annotations, for example:

– @Test is used the to tell the framework that the following method shall be executed as
a unit test.

– @Before or @After can be used to annotate methods which should be executed before
or after every @Test method. They can be used to setup or tear down the environment.

– @BeforeClass and @AfterClass are similar, but they are only executed once, namely
before the class with the test cases is instantiated by the framework for the first time
and after the last test case of the class has been executed, respectively. An application
for these methods would be the setup of database connections and other tasks which
involve more resources and therefore should not be executed before or after every single
test case.

– @Ignore can be used to mark a @Test method to be ignored by the framework. It will
nevertheless show up in the statistics but it will be marked as ignored. This is, for
example, useful if the test or the tested feature is not completely implemented yet.

9
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package university;

2

import org.junit.Test;

4 import org.junit.Before;

import static org.junit.Assert.assertEquals;

6

public class PersonTest {

8

private Person p;

10

/**

12 * Setup method which creates a Person object.

*/

14 @Before

public void setup(){

16 p = new Person ();

}

18

/**

20 * The actual unit test.

*/

22 @Test

public void getAgeTest (){

24 // Test if the age equals 20

assertEquals(p.getAge () ,20);

26 }

}

Listing 1.2: Example of a simple JUnit test

• Test runners which can be used to execute the tests and collect statistics about successful,
ignored and failed tests. JUnit provides only simple, text-based test runners because modern
software development environments such as Eclipse contain test runners which are integrated
into their graphical user interface.

• Some useful assertions such as org.junit.Assert.assertEquals() which can be used to check
the actual result against the expected one.

To make use of JUnit, the programmer needs to provide the actual unit tests and some test data.
In most cases, special setup and tear down methods will be required too, as well as a test strategy
which describes among other things the layout of the test suite.

The sequence of actions during the execution of unit tests such as the one given in Figure 1.2 can
be described as follows: A test runner looks for @Test annotated methods in a given class which
are not annotated with @Ignore. If there are such methods, it executes the static @BeforeClass

annotated methods which should initialise more expensive testing setups. This initialisation could
include, for example, the setup of database connections or the parsing of configuration files. Then
the test runner creates a first new instance of the class with the test cases and executes the @Before

annotated methods followed by a call to the actual @Test annotated method which implements
the first test case. JUnit creates a new instance of the class with the test cases for every execution
of an actual test case. When the test has finished, the test runner executes the @After annotated
methods and records the result, that is, whether an unexpected exception was thrown or whether
an assertion was triggered, both of which result in a failed test case. If there are no more test
cases in the class, the @AfterClass annotated methods get called and the results are returned.
Depending on the actual test runner, these may be displayed as text or graphically in a GUI.

10



1.3 Related Work

1.2.3 Workflow

An overview of the intended workflow can be found in Figure 1.3. It would usually start by
creating a UML model with the help of a CASE-tool such as ArgoUML and by specifying OCL
constraints for the model. The outcome of this step currently needs to be combined into one
file using the Dresden OCL Toolkit and is then processed by the Generic Code Generator which
emits source code stubs. These stubs are then customised through the user by adding the actual
implementation and other details which could not be generated automatically. During this phase,
periodic executions of the unit tests are used to verify the implementation. Finally everything
should work as intended and the system can be shipped.

Generate Model Write OCL Specification

Combine to XMI

Generate Java Stubs Generate JUnit Stubs Generate Testdata StubsGenerate POM Stub

Customize/Implement Stubs Run Unit Tests

Figure 1.3: The intended workflow

1.3 Related Work

This thesis is about the automatic generation of JUnit test-harnesses and also includes the imple-
mentation of a library for access to test data. Furthermore, it comprises the automatic generation
of program code which verifies interface specifications that are given in the form of OCL pre-
and postconditions and invariants. Several projects in these areas already existed and the most
important ones for the context of this thesis will be mentioned in the next sections.

1.3.1 Unit Testing

There is a large amount of unit testing frameworks available many of which are listed in an
overview on Wikipedia [20]. This thesis focuses on JUnit [7] which is presumably the most famous
unit testing framework for Java and more thoroughly described in section 1.2.2. Nevertheless, the
presented concepts are mostly independent of JUnit and Java and therefore could be implemented
for other languages as well.

Apache Maven [18] and build tools in general may also be put in the context of unit testing as
they can execute unit tests as part of the build cycle. Since Maven is used in this thesis, some
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of its useful features and an extension of the code generator to support the generation of basic
project descriptor files for Maven will briefly be described in section 3.2.3.

1.3.2 Access to Test Data

There are also many frameworks or libraries which facilitate the access to test data from within
unit tests, so only those which inspired the work of this thesis will be mentioned. One of them was
JTestCase [15] which is a framework that can be used to separate unit tests from the test data. It
uses an XML based file format to store the test data and provides object oriented means to access
this data from within the unit tests. The other one was DDSteps [14] which uses external test
data in Excel or XML files that is injected into test cases which are then run once for each row of
data. This thesis takes a similar approach but does not use XML for the storage of test data.

1.3.3 Interface Specifications

Since the tool-chain mentioned in section 1.1 is UML-based and already had support for the Object
Constraint Language (OCL) [12] which is part of the UML standard, this was the specification
language used in this thesis. Design by Contract [11] is a paradigm for designing computer software
which prescribes the use of checkable interface specifications. It was first implemented in the Eiffel
programming language which is organised around the concepts of Design by Contract. The Java
Modeling Language (JML) [9] is an interface specification language which is specific for Java and
also follows the Design by Contract paradigm. In JML, specifications are directly written into the
Java source code files in the form of special comments.

Dresden OCL Toolkit

One part of this thesis consists of the translation from OCL constraints to Java code that should be
executed during unit tests. This generated code uses the Dresden OCL Toolkit [1] which contains
the implementation of an OCL Standard Library for Java. The library implements the predefined
primitive types and also the collection types of OCL, including the operations defined on these
types. The toolkit also comprises a code generator and a tool to combine the XMI description file
of UML models with external OCL specifications into one common XMI file.

1.3.4 Automatic Code Generation

The Generic Code Generator (GCG) [4] which is used and extended in this thesis was the subject
of an earlier semester thesis. It uses a template-driven approach to code generation and so called
cartridges as an extension mechanism.

JMLUnit [3] was developed in the context of JML, the Java Modeling Language, and makes
use of JML interface specifications to automatically generate test oracles. It employs JUnit to
execute the generated unit tests. Test data is provided in an abstract class and the actual test
extends this class, which has the advantage that the concrete class may be overwritten without
losing the test data. This approach inspired the class hierarchy of the generated test suite which
will be presented in section 2.2.1.

A different approach is taken by JUnitDoclet [8] which generates test suites with skeletons of
test cases based on the application source code. It therefore does not start with a specification or
model of the system but with the source code of the actual implementation. For each package,
it generates a test suite containing the test cases of its classes. Every public method gets a test
method, and getter/setter tests are combined into one test case. The generated tests can be
modified and the changes are preserved over regenerations of the test suite.
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2 Design

2.1 Design of a Generic Test Strategy

There are different strategies for unit and regression testing one could come up with, each with its
own advantages and disadvantages. The approach taken in this thesis tries to separate test data
from the actual tests and employs one test class for every class of the system which has non-private
methods. There is one test method for every non-private method of the tested class.

The separation of test data and actual tests allows changes to the test data without the need
to modify the tests themselves. It also simplifies these modifications for the tester and relaxes
dependencies on the implementation language of the system because of the higher degree of ab-
straction in the test data representation. This of course leads to the need of means to access test
data from within unit tests, which is fulfilled by a library that parses a file containing test data
and provides access to this test data.

2.2 Layout of the Test Suite

The test strategy from section 2.1 implies some requirements for the overall layout of the test
suite: Because there should be a test method for every non-private method, access to protected
and default-access methods must be possible, therefore the test class must be in the same package
as the tested class. Though this could be relaxed as these methods are not part of the public
interface of a class, it is a useful feature for the programmer and may increase test coverage.

Furthermore, a file format is required to allow for the separation of tests and test data. Such a
format should fulfil two goals:

1. Easily editable: The files must be editable by programmers and testers and should therefore
not involve too much syntactic overhead. This is the reason why XML fell flat for this task.

2. Simple to parse and generate: Because these files are parsed during every run of the test
suite, they should not involve too much processing overhead. On the other hand, they should
be easy to generate as well since it would be useful if a skeleton was generated automatically.
Such a skeleton then could already contain test data generated by HOL-TestGen.

As mentioned in section 1.2.2, setup and tear down methods might be required by the tests.
Since such methods often cannot be generated automatically, there needs to be a way to preserve
these methods over successive automatic generations of the test suite (which would be required
whenever changes in the model occur which need to be reflected in the test suite). This is also
valid for custom methods used to compare the actual and the expected output. The solution of
this problem was inspired by JMLUnit [3]: They generate an abstract and a concrete class at
first and only overwrite the concrete class in later runs of the code generator. In the next few
subsections, the actual layout of the test suite will be explained more in-depth using the example
of section 1.2.1.

2.2.1 Class Hierarchy

For every class of the system, there are two automatically generated classes in the test suite which
serve different purposes:

13



2 Design

1. An abstract class, which can and often must be customised by the user. This class contains
all the custom setup and tear down methods as well as custom methods to check the actual
outputs. One task which must be fulfilled by this class is the initialisation of an instance of
the class under test which is used as the target object to call the currently tested method
on. In addition, this class may contain methods which produce inputs and expected outputs
which are not of a basic data type such as integer or string. In the case that the automatically
generated test suite does not allow certain aspects or methods of the system to be tested
easily, is is also possible to insert custom @Test methods into this class which are also executed
by JUnit test runners.

2. A concrete class, which contains all the automatically generated @Test methods correspond-
ing to the non-private methods of the tested class. This class should not be modified because
it gets overwritten on subsequent runs of the code generator. Besides the test methods, this
class contains code which checks OCL pre- and postconditions as well as invariants of the
tested class: If a precondition fails with the given test data, the test is not executed as this
test data was not valid, but if the postcondition or the invariant fails after executing the
tested method, there obviously is a deviation from the expected behaviour which results in
a failed test case. The concrete class is also responsible for the initialisation of the library
that provides access to the test data. It must therefore contain the path to the test data,
the name of the tested class and the names of its non-private methods.

See Figure 2.1 for the class hierarchy which would be generated for the classes of Figure 1.2. All
generated classes are in the same package as the tested class to allow access to protected and
default-access methods. The concrete classes extend the abstract ones and are used by JUnit test
runners. They implement the TestDataUser interface to give some helper classes of the test data
access library access to information about the currently tested class.

university

PersonTest
...

StudentTest
...

ProfessorTest
...

AbstractPersonTest
testObject:Person

AbstractStudentTest
testObject:Student

AbstractProfessorTest
testObject:Professor

ch.ethz.infsec.jtestdataaccessor

TestDataUser
getClassUnderTest():String
getTestObject():Object

Figure 2.1: Class hierarchy of the generated test suite

2.2.2 Directory Layout

The directory layout which is generated by the code generator for Java and JUnit was adopted from
Apache Maven [18]: Maven uses a standard directory layout which separates the implementation
from the tests and generally follows best practices. Besides the advantage that a project using this
layout can easily be built using Maven, the layout seems to make sense as it separates different
aspects of the system such as the implementation from tests and general documentation like the
project website. For the class diagrams in Figure 1.2 and Figure 2.1, the directory layout would
look like the one in Listing 2.1. The listing also shows where the test data resides.

14



2.2 Layout of the Test Suite

src/

2 |--main/

| ‘--java/

4 | ‘--university/

| |--Person.java

6 | ‘--...

‘--test/

8 |--java/

| ‘--university/

10 | |--AbstractPersonTest.java

| |--...

12 | |--PersonTest.java

| ‘--...

14 ‘--resources/

‘--university/

16 |--TestdataPerson

‘--...

Listing 2.1: An example of the directory tree

2.2.3 Test Data Format

Because tests of functions usually take some input and compare the output to a given value,
this must be supported by the file format. An apparent problem is the difficulty of representing
complex object structures in a simple file format. This can be solved by specifying methods
producing those object structures in the test data file. The actual methods would be implemented
in the abstract classes mentioned in section 2.2.1, which has the advantage that the test data file
does not contain language specific test data.

Since the result or outcome of a method might not be checkable by a default verifier from JUnit,
it should be possible to declare custom verifiers in addition to the default ones. They would then
be used to actually check the result.

Another necessary feature is the ability to specify setup and tear down methods for each tested
method, which would be called before and after every test execution with a given set of test data.
JUnit’s annotations are not useable here because JUnit does not know about the different sets of
test data – for JUnit, several sets of test data still look like one test case because they are all used
in one @Test-annotated method.

If overloaded methods should be tested as well, there must be a way to specify the parameter
types of the tested method because the method name is not enough to identify them. An optional
description or name for the test case would certainly be useful in case of a failed test as this
information could be included in exceptions or assertions.

To combine all these requirements, a proprietary file format was devised. Listing A.1 in the
appendix shows the grammar for the format. It is loosely based on the well-known INI-file format
which contains different sections and several key-value-pairs in these sections. See Listing 2.2 for
an example.

The sections contain two different scopes, namely a global one which sets general options for
the execution of a test case and may contain the following keys:

resulttype: The return type of the tested method if it is not void.

inputtypes: A comma separated list with parameter types of the tested method, if any.

setup: Setup method which will be called each time before the tested method is executed with a
new set of test data.

teardown: Tear down method analogous to the setup method.

15



2 Design

[getAge]

2 resulttype = int; # Type of the result

setup = setup0 (); # Setup the object

4 {

result = 9; # Expected result

6 checker = EQUALS; # Check of result

comment = "Test if the result is 9";

8 }

10 [setName]

inputtypes = String; # Type of the input

12 setup = setup1 ();

{

14 input = "Foo"; # Provided input

checker = resultcheck0 ();

16 }

Listing 2.2: Example of a file with testdata

The other scope is the one containing the test data and is enclosed in curly braces. There may be
several such blocks with different sets of test data and they may contain the following keys:

input: A comma separated list of inputs. It may contain values of basic types such as integers or
strings, but also names of methods which return a suitable value.

result: The expected result or a method which generates it. This could also be an exception if
the tested method should throw one for the given input.

checker: A default checker provided by JUnit such as EQUALS or a method which verifies the
result.

comment: A comment to describe the current set of test data.

Comments in the test data file start with the #-sign and they continue until the end of the line.
The title of a section matches the name of the method the test data sets in its body are for. Since
different sets of test data may require different setup and tear down methods, there may be more
than one section with the same title.

2.3 Code Generator Extension for JUnit Support

The existing Generic Code Generator (GCG) from [4] primarily supported the code generation for
C# and some variants thereof, but had only tentative support for Java, hence several improvements
of the Java cartridge and template were needed. Because the generation of JUnit test-harnesses
also involved some other requirements which were not fulfilled yet, multiple small extensions of
the code generator were implemented during this thesis. One example is an alternate way to open
files in a template such that existing files with the same name are not overwritten. This is required
to preserve changes made by the user as mentioned in section 2.2.

2.3.1 Test Cartridge

To support a new output language, the code generator requires a new template and probably a
new cartridge which supports additional list, string or boolean variables. Since JUnit tests are
written in Java, the JUnit cartridge extends the Java cartridge and adds some new variables which
are only required in JUnit tests. Section 3.2.2 lists these new variables.
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2.4 Pre- and Postcondition Checking

2.4 Pre- and Postcondition Checking

OCL contracts for methods and class invariants can be used to verify that the actual behaviour of
the system matches the intended one. As this is exactly what testing is all about, it is sensible to
integrate constraint checking code into unit tests. One way to achieve this is the use of the Dresden
OCL Toolkit as mentioned in section 1.3.3, namely the OCL Standard Library implementation
which is part of the toolkit. There are two options for the actual integration of the toolkit since
it already contains a constraint code generator for Java:

1. Use the GCG to generate Java stubs or take existing code and then apply the Dresden OCL
code generator to inject constraint checking code. This approach has the advantage that
Dresden OCL does all the OCL handling, but it changes (and therefore requires) the code
of the actual implementation which might not be an option in certain cases.

2. Extend the GCG to generate Java code that makes use of the Dresden OCL Standard
Library. This code could be placed in the actual implementation of the system (with the
same problem as above) or directly into the unit tests. The benefit of this approach is that
both options persist - the JUnit code generator could insert the code into the unit tests, or a
special Java template could generate Java stubs containing the constraint checking code. The
drawback is that the implementation might be fairly limited as a complete implementation
would go beyond the scope of a semester thesis.

The approach which was actually taken is the second one.
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3 Implementation

3.1 jtestdataaccessor

The jtestdataaccessor is the Java library which parses the test data file into a data structure
which can be used in unit tests. It uses the ANTLR parser generator [13] for the construction of
the actual parser and JUnit assertions to signal failed tests. Besides providing access to test data
which is described below, the library also contains other functionality which is useful in the given
context:

Invocation of the tested method: Since the test data file may contain several sections for the
same method and therein different sets of test data, the same method of the tested class
might need to be executed fairly often. Because the code which implements this would look
the same in every case, it has been put in a method of a helper class which is used by the
actual unit tests. This method also takes care of calling setup and tear down methods as
well as initiating the verification of the result (see below). In the case of an exception during
the execution of the tested method, it is caught and handled appropriately:

• If the precondition of the method failed, the exception is ignored as the test data was
not valid, but a message gets printed which indicates this.

• If the postcondition or the invariant failed, the standard JUnit org.junit.Assert.fail()
assertion gets triggered which results in a failed test case.

• If an exception of the expected type was thrown, the method discards it. This behaviour
is similar to JUnit when the @Test annotation was specified with an optional parameter
as follows: @Test(expected = <Class of the expected exception>.class). In this case,
JUnit requires the exception to be thrown, else the test failed. Such a feature is useful
to also test the exceptional behaviour of a class.

Verification of the result: Because one can specify a verifier for the result in the test data file,
there is a method which executes this verifier with the result of the tested method. It
delegates most of its work to JUnit assertions, but it may also call a user defined function.

3.1.1 Lexer/Parser

The lexer gets the characters of the test data file as input and converts them into lexical tokens.
While processing the tokens from the lexer, the parser then constructs the internal tree to represent
the test data in an object oriented data structure. Since the input is user defined, it may contain
errors, therefore some sanity checks are done during parsing and exceptions thrown if they fail.

3.1.2 Data Structure

For the internal storage of the test data, a data structure was required which could represent all
the elements of a test data file. A simplified diagram of the devised structure can be found in
Figure 3.1. It consists of two main parts: (1) The TestDataAccessor class as entry point to the
library among the classes in the top level package which represent the different scopes in the test
data file and (2) the classes of the nodes package which stand for the right hand sides of the keys
mentioned in section 2.2.3. In more detail, the classes of the diagram fulfil the following tasks:
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ch.ethz.infsec.jtestdataaccessor

TestDataAccessor

TestData

FunctionUnderTest

TestCase

nodes

Argument

Value ResultChecker

SimpleValue Function Type

0..*

0..*

0..*0..2

0..*

Figure 3.1: Simplified class diagram of the jtestdataaccessor data structure

TestDataAccessor: Upon instantiation with the path to a file containing test data, the file is
parsed into the internal data structure. This class therefore encapsulates a TestData object
which is passed to the parser for initialisation and it provides access to the test data for a
given function.

TestData: This class represents the root of the test data data structure. It stores a list of
FunctionUnderTest-objects for each function which had at least one section in the test data
file.

FunctionUnderTest: Since this class represents a section of the test data file, it stores references
to setup/tear down Function objects as well as a return Type object and a list of parameter
Type objects. It also contains a list of TestCase objects because a section may contain several
sets of test data that are parsed into such a list.

TestCase: A test case consists of input and expected output, so this class stores a list of Value

parameters to the function and a result Value which constitutes the expected result. Besides
this, is also contains a reference to a ResultChecker object which is used to verify the result
and a comment which describes the test data stored in this object.

Argument: This abstract class is the root of the nodes hierarchy and stands for the right hand side
of a definition in the test data file.

Value: Since the right hand side of a definition may interchangeably contain values of basic types,
“function calls” or names of types, the objects which represent those values need to have a
common interface to get the actual value at runtime. This is fulfilled by the abstract Value

class which specifies such an interface.

SimpleValue: Basic values such as integers or strings are stored in instances of this class.

Function: Several keys of the test data file accept “function calls” in the arguments where the
value gets retrieved at runtime by calling a method of the abstract class of the test-harness.
Another application is the specification of setup and tear down methods which need to be
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executed before or after the execution of the tested method, respectively. The actual function
call is done using the reflection features of Java.

Type: The declaration of input and return types required a class for the representation of class ob-
jects, therefore this class searches for a class with a given name and returns the corresponding
class object. Because instances of basic data types are different from normal objects in Java,
they require special handling when retrieving their class object. A solution for this problem
is a simple mapping from the name of the basic data type to the corresponding class object.

ResultChecker: This class makes up the verifier of a TestCase which is either a default verifier
from JUnit or a user defined function.

3.2 Code Generator Extension

As mentioned in section 2.3, the generic code generator required some extensions and a new
cartridge for JUnit support. Because several minor improvements were just implemented on
demand and not specific to this thesis, they will not be mentioned in this report.

3.2.1 Java Support

The existing support for Java was only very basic and therefore not useful. Code generation for
classes was working to some degree, but certain information such as the visibility of methods was
not used, so the generated code was quite different from the model.

Extensions to the Java cartridge include among others:

• A new list variable parent_interface_list to allow the iteration over parent interfaces of a
class or interface which is required for proper code generation when interfaces are used.

• Some new boolean variables like operation_is_void to check for example if an operation is
void or operation_has_arguments to test if it has parameters.

• New string variables to include code for pre- and postconditions as well as invariants, to
insert the name of the current parent interface ($parent_interface$) and to define a stub
for the return value of a method ($returnvalue_stub$). The latter is useful if one wants
to generate code that can immediately be compiled because a Java compiler complains if a
non-void method does not return a value.

The Java template was mostly rewritten since it had only support for classes and was setting
the visibility of methods and attributes to public, no matter what the specification stated. Now it
supports classes, interfaces and enumerations and takes care of correctly specifying the visibility.
For methods which do return a value, it also inserts a return statement which returns a default
value matching the return type, that is a numeric return type results in 0, a string return type in
an empty string and objects in null.

3.2.2 JUnit Support

For the actual JUnit code generation, the cartridges are plugged together such that the JUnit
cartridge inherits the functionality of the Java cartridge, therefore all the features from the latter
are available in the Java cartridge as well. The Java cartridge thus only contains few extensions
to the template language:

• A new list variable unique_operation_list which contains every operation name only once
since several overloaded methods have the same name. This is no problem when the param-
eter types are used, but because there is only one unit test per method name, this would
result in a collision.
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• To check if a class is testable, a boolean variable isTestable was introduced. It is false
for interfaces, abstract classes and classes which do not contain methods. Additionally,
operation_isNotPrivate was added since private methods cannot be tested as well.

• Because the validity verification of contracts is slightly different when they need to be em-
bedded into unit tests, string variables which override those from the Java cartridge were
introduced to generate code that is adapted to the unit tests. The main difference is that
the code is not directly embedded in the classes that must fulfil the constraints, but in the
unit tests themselves. Therefore attribute accesses and method calls cannot be done on this

but on a local instance of the tested class.

The template for JUnit is fairly complex as it has to create three different files for each testable
class:

Concrete class: This class contains a @BeforeClass annotated method which sets up the environ-
ment, that is, it creates a TestDataAccessor object with the test data for the tested class and
it also sets up a helper class.

For each testable method, there is a @Test annotated method which initiates the test using
a function of the helper class by passing it the name of the tested method.

Because contracts must be checked before and after the execution of a tested method, for
each such method a wrapper function is created which contains the code to check pre- and
postconditions. Additionally, a method that verifies the invariant is generated and called
after the postcondition checks.

Abstract class: As this class will be modified by the user, it only contains a reference to an
instance of the tested class which will be used to call the tested methods. This way it is
mostly independent from changes to the model and does not need to be updated.

Testdata stub: The generated stub already contains a section for each non-private method of the
tested class which is provided with values for the resulttype and inputtypes keys since these
values are known at code generation time. Overloading of methods is thus supported as well.
The test case scope can be generated with some sensible values, too: If the method does
not have any parameters, there cannot be an input key, and if the method is void, result is
not required, either (except if exceptional behaviour shall be tested). All keys without value
which are generated as stubs are commented since the parser would not accept them.

3.2.3 POM Support

POM stands for Project Object Model and is the XML file format used in Apache Maven [18]
as a project descriptor. A basic POM file contains a group and artifact id as well as the version
number of the artifact. Furthermore, a dependency section is used to specify other artifacts the
project depends on which are automatically fetched, locally cached and included in the class path
when Maven is run. There are many other useful features and a large number of plug-ins available
which can simply be listed in the POM that will be retrieved and used automatically (sometimes
depending on the specified goal Maven gets called with). The advantage of downloading depen-
dencies and plug-ins on demand is that they do not need to be installed locally by hand nor stored
in the revision control system.

As mentioned in section 2.2.2, the directory layout of the generated test suite was adopted from
Maven, so a new cartridge and template pair to generate a basic POM file is another sensible
extension of the code generator. Because the jtestdataaccessor was also built with Maven and
since it is possible to inject arbitrary JAR files such as the Dresden OCL Standard Library into
the local Maven repository, dependencies on these libraries can be specified in the generated POM.
This allows an immediate initial compilation of the system and the test suite using Maven.

The template for the POM generation did not require any new features, thus the cartridge is
only minimal. It was nevertheless created since future versions of the su4sml UML repository (see
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Figure 1.1) may provide more information which could be used for the group and artifact ids of
the POM or the project name. These values are currently set to fairly meaningless defaults, so
the user should customize the POM.

3.3 OCL Integration

To support the generation of Java code that evaluates OCL expressions for the verification of pre-
and postconditions as well as invariants, a new SML structure Ocl2DresdenJava was implemented.
It takes an OCL term and returns Java code which makes use of the Dresden OCL Standard
Library to evaluate the constraint.

In addition to the large number of possible OCL expressions which could be supported, two
main problems were encountered during the development of this extension:

1. A straightforward way to evaluate such expressions would be to simply nest the correspond-
ing Java expressions. Since the resulting code would be completely unreadable and long
expressions might trigger limits of the Java compiler, this was not a feasible option. An
alternative solution which was also implemented in the Dresden OCL code generator is the
use of temporary variables to evaluate each subexpression. Since these variables require
unique names, this cannot be implemented easily in a purely functional way.

2. Similarly, @pre expressions posed another problem: There must be a way to store the values
from the pre-state of the method execution which makes them accessible in the post-state.

The solution to these problems involved a diversion from the pristine path of functional pro-
gramming: Two SML structures were introduced which contain functions that are not side-effect
free:

1. varcounter implements a simple counter which is incremented on every use. This allows the
creation of unique variable names which can be used to generate the temporary variables.

2. preMap is a mapping from a string to a variable id. The evaluation of @pre expressions
is done by looking for such expression in the postconditions of a method during the code
generation for the preconditions. When such an expression is found, code for the evaluation
of its argument is generated and the variable id of the variable with the result is stored in
the map. The key in the map is a string representation of the expression. Now it is possible
to look up the variable which corresponds to an @pre expression in the postcondition.

3.3.1 Supported OCL Subset

Since a complete implementation of a translation from OCL to Java was not feasible, only a subset
of OCL expressions is currently supported:

• All operations on primitive types such as boolean and integer are supported.

• Some operations on collections like size() and isEmpty() have also been implemented.

• result and the value of method parameters may be used in pre- and postconditions of
methods.

• Access to attributes and associations of classes works as well as method calls including
parameters during the constraint evaluation.

• As mentioned before, @pre expressions in postconditions are supported.

• Some other operation like if then else, oclIsDefined() and oclAsType() were also imple-
mented.

Most operations on collections such as forAll() and exists() are missing. Nevertheless, the
existing structure seems fairly extensible such that an addition of support for a broader set of
expressions is supported reasonably well.
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3.3 OCL Integration

3.3.2 JavaOCL Template

This template is very similar to the Java template, but it uses the string variables which contain
the code for OCL expressions. Therefore the code which is generated using this template evaluates
OCL constraints when calling a method of the class. This is done in a way that is similar to the
JUnit tests: A wrapper function which evaluates the constraints calls the actual method which is
a private method of the class. As such, this is comparable to what the Dresden OCL code injector
does, except that is does not inject constraint checking code into existing classes but generates
stubs for the classes from the model.
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4.1 Prerequisites

Because the outcome of this thesis is fairly multilingual, there are several external dependencies
which must be fulfilled before the complete tool-chain can be used:

• The jtestdataaccessor library depends on JUnit ≥ 4.0, AntLR ≥ 4.7.6, Java ≥ 1.5 and
Apache Maven 2. The latter is optional but highly recommended since it simplifies the
compilation and installation process after it has been set up.

• For the compilation and execution of the generated unit tests, the Dresden OCL Standard
Library from the Dresden OCL Toolkit is needed. The toolkit is currently also required
to combine the OCL specifications with the XMI file that contains the UML model of the
system and finally serves as input for the code generator. To compile the toolkit, Java ≥ 1.5
and Apache Ant [5] ≥ 1.6.2 are necessary.

• Since the code generator is implemented in SML, a SML runtime or compiler is required
such as SML/NJ [16], MLton [19] or Poly/ML [10].

4.2 Compilation and Installation

In the following sections, it is assumed that Maven is used as the build tool and that everything
works the way it should. If the latter is not the case, there usually should be a file called README
which gives more information about the installation and is presumably kept up to date in contrast
to this thesis.

4.2.1 jtestdataaccessor

Since JUnit and AntLR are defined as dependencies in the project descriptor file for Maven,
jtestdataaccessor can be built, tested and installed into the local Maven repository by executing
mvn install. Besides the install goal, the provided POM file supports some other goals which
are useful:

package: This goal builds a JAR file of the jtestdataaccessor in the target/ directory. The
generated archive does neither contain JUnit nor AntLR, so they need to be present on the
class path in order to use the library.

assembly:assembly: By using this goal, a JAR file containing all the dependencies of the library
can be created in the target/ directory.

site: The Java API documentation of the library can be constructed with this goal and will be
placed under target/site/apidocs/. In addition to the API documentation, this goal also
creates a project website which contains reports from the unit tests and the cross referenced
source code of the project.

To use the jtestdataaccessor library in a project which is built by Maven, a dependency such
as the one in Listing 4.1 can be used in the <dependencies> section of the projects’ POM file after
installing the library into the local repository.
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<dependency >

2 <groupId >ch.ethz.infsec.jtestdataaccessor </groupId >

<artifactId >jtestdataaccessor </artifactId >

4 <version >1.0-SNAPSHOT </version >

<scope>test</scope>

6 </dependency >

Listing 4.1: jtestdataaccessor dependency

4.2.2 Dresden OCL Toolkit

The automatically generated unit tests depend on the Dresden OCL Standard Library since they
also verify OCL constraints. It is recommended to check out the current version of the Dresden
OCL Toolkit 2.0 from CVS and to build it from source. Since the build process is based on
Apache Ant, it should suffice to execute ant jar.ocl20stdlib in the top level directory of the
CVS checkout which compiles the library and builds the JAR archive ocl20stdlib.jar in the
lib/internal/ subdirectory. This library can then be installed into the local Maven repository
by using the following command:

mvn install:install-file -Dfile=lib/internal/ocl20stdlib.jar \
-DgroupId=tudresden.ocl20 -DartifactId=stdlib \
-Dversion=1.0-SNAPSHOT -Dpackaging=jar -DgeneratePom=true

Analogous to the jtestdataaccessor, the OCL Standard Library may then be used in a project
by specifying a dependency like the one in Listing 4.2. Because the <scope> tag tells Maven to only
use the library during the testing phase of the build, this line must be removed if the JavaOCL
template mentioned in section 3.3.2 was used to generate the skeleton of the system.

<dependency >

2 <groupId >tudresden.ocl20 </groupId >

<artifactId >stdlib </artifactId >

4 <version >1.0-SNAPSHOT </version >

<scope>test</scope>

6 </dependency >

Listing 4.2: Dresden OCL Standard Library dependency

4.2.3 Code Generator

The code generator can be compiled in different ways: A call to make codegen in the su4sml/
directory will compile the code generator using SML/NJ and output a heap image file. If the
interactive sml shell is used instead (still in the same directory), the code generator may be run
after executing CM.make("src/codegen/codegen.cm");.

Alternatively, the MLton compiler builds a binary which is directly executable when called in
the su4sml/ directory with mlton src/codegen/codegen.mlb.

4.3 Usage

4.3.1 jtestdataaccessor

When using the code generator extension to generate the test suite, the jtestdataaccessor does
not need to be used directly since all such code is generated automatically. This generated code
may therefore serve as an example on how to use the jtestdataaccessor, together with the
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ch.ethz.infsec.jtestdataaccessor.TestHelper class which does most of the work involving access
to test data.

4.3.2 Code Generator

The code generator is called with two arguments, the first one being the input XMI file and
the latter one being the target language. During this thesis, three new target languages were
developed:

junit: This target language generates a test suite containing constraint checking code and follows
the pattern described in section 2.2.1. In addition to the Java classes it also creates stubs
for the test data files.

javaocl: When using this target, Java source code stubs for the system will be generated which
contain constraint checking code as described in section 3.3.2. This is the only difference to
the java target which existed already before (that is, besides the improvements of the java
target which were implemented in this thesis as well).

pom: Basic Project Object Model Files for Maven as mentioned in section 3.2.3 are created by this
target. As they contain several default values, these files must be customised by the user
even though they should work out of the box.

When using Maven as the build tool and if a POM file has been created as well, the generated
code may now be compiled using mvn compile which will put the class files in a directory tree
unter target/classes/. mvn test can be used to compile and execute the unit tests.
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5 Conclusion and Future Work

This thesis has shown the design and implementation of the automatic generation of JUnit test-
harnesses. The presented solution consists of three main parts:

1. The jtestdataaccessor library, which simplifies access to test data from within JUnit tests.
This test data is stored in simple files with a special format that is mostly independent of
the implementation language of the system.

2. An extension of the Generic Code Generator which generates test suites following the
devised pattern of a generic test strategy. The generated test suites make use of the
jtestdataaccessor to access test data which can therefore be separated from the actual
unit tests.

3. The verification of interface specifications during the execution of unit tests by another
extension of the code generator. This extension is able to translate OCL constraints to Java
code that uses the Dresden OCL Toolkit to evaluate those constraints at runtime.

During the work on this thesis, some other, mostly minor extensions of the code generator and
the su4sml UML repository were implemented as needed. General experiences have shown that
the existing architecture is relatively easy to extend and use.

5.1 Future Development

The generated code for the verification of interface specifications currently does not implement
behavioural subtyping which basically consists of three properties:

1. Invariants of subtypes can only be stronger than those of its parents.

2. Preconditions of overriding methods of subtypes may be weaker than those of its parents.

3. Postconditions of overriding methods of subtypes can only be stronger than those of its
parents.

An extension in the case of invariants and postconditions seems straightforward, but unfortunately
more difficult for preconditions.

Since complete support for the translation of all OCL constraints to Java code was not feasible,
this is an extension which is left for future work. It nevertheless seems that the implemented
subset allows one to express many meaningful constraints.

Some outcomes of this thesis still have some minor dependencies on the chosen implementation
language. If the architecture is ported to other languages, these should be removed such that the
test data files can be used for systems implemented in different languages without the need for
adaptations.
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A Test Data File Grammar

TestData = { Section };

2

(* A section consists of a global scope and any number of test cases. *)

4 Section = ’[’ IdentString ’]’ { ( GlobalAssignment | TestCase ) };

6 (* Keys and allowed values in the global scope *)

GlobalAssignment = ResultTypeDef | InputTypesDef

8 | SetupDef | TearDownDef;

ResultTypeDef = ’resulttype =’ Type ’;’;

10 InputTypesDef = ’inputtypes =’ Type { ’,’ Type } ’;’;

SetupDef = ’setup =’ Function ’;’;

12 TearDownDef = ’teardown =’ Function ’;’;

14 (* Keys and allowed values in the test case scope *)

TestCase = ’{’ TestCaseAssignment { TestCaseAssignment } ’}’;

16 TestCaseAssignment = InputDef | ResultDef | CheckerDef | CommentDef;

InputDef = ’input =’ Value { ’,’ Value } ’;’;

18 ResultDef = ’result =’ ( Value | ClassName ) ’;’;

CheckerDef = ’checker =’ ( Function | DefaultChecker ) ’;’;

20 CommentDef = ’comment =’ ’"’ String ’"’ ’;’;

22 (* Default checkers which map directly to JUnit assertions. *)

DefaultChecker = ’EQUALS ’ | ’NOTNULL ’ | ’NULL’ | ’NOTSAME ’ | ’SAME’

24 | ’FAIL’ | ’NOTEQUAL ’;

Value = Function | ’"’ String ’"’ | ’\’’ Character ’\’’ | Integer

26 | Real | Boolean;

Function = IdentString ’()’;

28 Type = ClassName [ ’[]’ ];

IdentString = AlphCharacter { ( AlphCharacter | Digit ) };

30

(* Terminals *)

32 String = STRING;

Character = CHARACTER;

34 Integer = INTEGER;

Real = REAL;

36 Boolean = BOOLEAN;

ClassName = CLASSNAME;

38 AlphCharacter = ALPHABETICCHARACTER;

Digit = DIGIT;

Listing A.1: EBNF grammar for the test data file

The grammar in Listing A.1 does not include comments which are nevertheless supported by the
actual implementation: Comments are usually discarded by the lexer and therefore they do neither
need to be supported by the parser, nor are they part of the grammar. Some of the terminals are
not common but the meaning should be clear from their name, whereas CLASSNAME could be an
exception: Since the grammar for class names depends on the effective programming language,
this is not specified in the grammar for test data files. In C# for example, name space names
usually start with a capital letter whereas in Java package names are typically all lowercase.
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