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Abstract

This semester thesis shows the implementation of a Netfilter kernel module which matches packets
containing an AODV (service discovery [7]) extension. These packets may then be passed to a
kernel queue for access from userspace. The module was tested with a service discovery system
and some performance measurements were done.
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1 Introduction

It lies in the nature of Mobile Ad Hoc Networks (MANETS) that there is no centralized infrastruc-
ture available - nevertheless, many applications in MANETSs depend on the availability of services
such as SIP, DNS or SLP. One possible approach to solve this problem is the distribution of the
service discovery among the available nodes in the network. In [1] and [7] an implementation of
such a distributed service discovery (DSD) framework was proposed. Their work uses piggybacking
of service discovery information to routing layer messages and implements a fully distributed SIP
service - [4] did the same for SLP. Unfortunately, measurements showed that the normal routing
got slower and that the service lookup times were not satisfying, either. It was then suspected
that the loss of performance came from the overhead of passing around the routing packets be-
tween kernel- and userspace as it happens in DSD. This is the point where this semester thesis
comes into play: A netfilter match, matching only those packets which need to pass through the
DSD system, would improve the performance of the normal routing because packets would only
get passed to userspace in two cases: (1) When they are already involved in a currently running
service lookup (and thus containing a service discovery extension) or (2) when they are needed for
the piggybacking of service discovery information. This presumably reduces the interference with
the normal routing significantly.

This thesis will first give an introduction to Linux netfilter and especially netfilter matches
followed by the description of the actual implementation of such a match for the AODV routing
protocol. It will then present the results of some measurements with the system from [4] and an
improved version which was developed in parallel to this thesis. Finally, a users’ guide for the
developed match and a conclusion will be presented.

1.1 Distributed Service Discovery (DSD)

This thesis uses a distributed SLP service for testing and for an exemplary integration of the
match into a DSD system. The service provides the normal SLP interface over TCP and UDP for
the handling of service registrations and lookups but uses a different backend based on the DSD
system where service information is efficiently piggybacked to routing messages. The problematic
dependence on the underlying routing protocol has been resolved by using routing handler plugins
which can be treated like a black box receiving and modifying raw routing packets. Because the
system used in this thesis makes use of an AODV plugin and AODV being an on-demand routing
protocol, the service discovery also uses a lazy approach to perform service registration and lookup.
Hence, the registration results only in the local storage of the service information while a lookup
gets piggybacked to an outgoing routing message, in this case using AODV extensions. Exploiting
a routing protocols’ extensions for service discovery makes perfect sense since routing protocols
for MANETS are already optimized for this type of network. Because they are running anyway,
some packets can be saved as well since a service discovery request is normally followed by a route
request for the host providing the service - and this route already has been established by the
route request/reply carrying the service discovery request/reply.



2 Related Work

2.1 Linux Netfilter

The DSD systems introduced in 1.1 make use of netfilters’ 1ibipq which may be used together with
the iptables QUEUE target to transfer packets between kernel and userspace. A more thorough
introduction to netfilter will be given in 3.

2.2 AODV Routing Protocol

AODV, the Ad-hoc On-demand Distance Vector routing algorithm [3] is a reactive routing protocol
(it only establishes a new route to a destination on demand) for use in eg. MANETS. For a short
description of its packet formats, see 4.1.

This thesis and the aforementioned DSD systems make use of the AODV-UU [8] implementation
of the AODV protocol. It consists of a Linux kernel module which uses netfilter to capture data
packets and a userspace daemon which maintains the kernel routing table.

2.3 Distributed Service Location Protocol for MANETSs

The service location protocol (SLP, [2]) provides a framework for the discovery and selection of
network services. An implementation of SLP on top of the DSD system is provided by [4] and was
used for testing of the netfilter match and also when doing measurements of the performance.



3 An Introduction to Linux Netfilter

Linux netfilter! is the powerful packet filtering framework inside the Linux kernel. It consists of
three parts:

e So called “hooks” for each protocol which are points in a packet’s traversal of that protocol
stack where netfilter gets called.

e The ability for parts of the kernel to register for listening to these hooks and then process
packets which traverse the hook. After processing, they tell the kernel what to do with the
packet: Discard it, accept it, forget about it or queue it for userspace.

e A queue where packets can be collected for sending to userspace.

The netfilter homepage has some documentation (especially [5] and [6]) which is for Linux
2.4.x but not entirely outdated yet. This is because the packet filtering infrastructure was not
completely changed between the 2.4.x kernel series and the current 2.6.x kernels - looking at earlier
major releases, it seems that this had been a tradition before: 2.0 used ipfwadm, 2.2 ipchains
and 2.4 iptables which is still the case for 2.6. It nevertheless turned out that the most reliable
and current documentation is contained in the kernel and iptables sources themselves, not only
because they contain many working examples.

3.1 Path of a Packet through Netfilter

As the netfilter framework is merely a series of hooks in various points in a protocol stack, a
packet selection system called IP Tables has been built over it. IP Tables currently provides a
set of up to three tables (‘filter’, ‘nat’, ‘mangle’, depending on kernel modules loaded) containing
so called firewall chains which are lists containing rules. The kernel modules providing the tables
can register them at the relevant hooks and ask for a packet to traverse a given table. Because
this thesis only used the ‘filter’ table, ‘nat’ and ‘mangle’ won’t be considered in the following
paragraphs (they work similarly, but are registered at different sets of hooks).

Figure 3.1 shows the traversal diagram for the ‘filter’ table. It contains the built-in chains INPUT
(for packets destined to local sockets), FORWARD (for packets being routed through the system),
and OuTPUT (for locally-generated packets).

Entries of a chain define criteria to match a packet and a target specifying the next rule which
should handle the packet in case the rule matches. This may be a user-defined rule or one of the
special values ACCEPT (let the packet pass), DROP (throw packet away), QUEUE (pass the packet
to userspace), or RETURN (go to next rule in calling chain). If a packet completely traversed a
built-in chain and was neither dropped nor accepted, the default policy of the chain decides it’s
fate.

The traversal itself looks as follows (see also Figure 3.1):

e When a packets comes in, the kernel first examines its destination and then decides where
it will be handled next (routing):

1. If it’s destined for the local system, it passes down to the INPUT chain. In case the
packet survives, any processes waiting for it will receive the packet afterwards.

Thttp://wuw.netfilter.org/
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Figure 3.1: IPv4 IP Tables traversal diagram for the ‘filter’ table

2. If it isn’t destined for the local system and forwarding is not enabled or the kernel does
not know how to forward the packet, it gets dropped. If forwarding is enabled, and
the packet is destined for another network interface, the packet goes to the FORWARD
chain - if it survives this, it gets sent out again through the other interface.

e Packets may also be generated locally. Before they leave the system, they go through the
OuTPUT chain. If the chain accepts a packet, routing decides on which interface it should
be sent and the packet continues out to the interface it is destined for.

3.2 Linux Kernel Modules

Kernel modules are pieces of code which may be loaded into and unloaded from the kernel at
runtime. This allows an extension of functionality without requiring a reboot of the system.
Netfilter may also be extended this way.

For a module to be loadable into the kernel, it must provide two functions: int init_module
(void) and void cleanup_module(void). The first function initializes the module when it gets
loaded and may eg. register handlers while the latter should undo whatever happened during
initialization, as it gets executed when the module is removed from the kernel. But as of kernel
version 2.2, these two functions should not be used directly anymore - module_init(int (*initfn
))) and module_exit(void (*exitfn)()) are macros from linux/init.h replacing them, which
permits two things: The functions may have arbitrary names and it allows the module to be
either built directly into the kernel or as a loadable module. If it’s built into the kernel, the
initialization function is being executed at system boot and the cleanup function never at all.
There are also two other macros which help save some space: __init and __exit. They have
no effect for loadable modules, but if the modules get built into the kernel, __init takes care
of discarding the initialization function when it has finished, while the latter omits the cleanup
function because a built in module cannot be unloaded.

The initialization function must return zero if everything went well and nonzero otherwise.

3.3 A New Match

The following sections will give a short overview of the structure of a new netfilter match and
are based on [5]. Starting with kernel 2.6.16, IP Tables is getting an overhaul and conversion to
x_tables which should ease the maintenance in the long run. Current kernels therefore contain
slightly modified versions of the structs and method signatures mentioned below, but the basic
structure is still the same (the main difference being that ipt_*-functions and structs now start
with xt_, but this is taken care of by some preprocessor macros in the kernel source - old sources
still compile, albeit with warnings because some method signatures changed; see Listing 3.1 for an
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3 An Introduction to Linux Netfilter

static struct ipt_match aodvext_match = {
.name = "aodvext",
.match = &match,
.checkentry = &ipt_aodvext_checkentry,
.me = THIS_MODULE,
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,17)
.matchsize = sizeof(struct ipt_aodvext_info)
#endif
3

Listing 3.1: Definition of struct ipt_match from ipt_aodvext.c

example of manually working around one difference in the format of a struct between IP Tables
in kernel 2.6.8 and 2.6.17+ using a preprocessor directive (older kernels did not have a matchsize
field in the struct, but newer kernels require this to be set if it is nonzero)).

3.3.1 Kernel Module

New match functions are usually implemented as a standalone module. At the core of a new match
function lies a struct ipt_match containing primarily the following fields:

list Used for inserting the match into a list, may be set to any junk, normally {NULL,NULL}.

name Name of the match function, should match the name of the module as this is used for
autoloading of the module from userspace.

match Pointer to a match function which gets the packet and returns a nonzero value if the packet
matches.

checkentry Another pointer to a function which checks the specifications for a rule. Returns
nonzero if the rule is accepted from the user. This way one can disallow the use of a match
built for UDP in a rule that allows TCP packets.

destroy Points to a function as well and gets called when an entry using this match is deleted.
Used to clean up resources allocated in checkentry.

me Set to THIS_MODULE thereby pointing to the module. Mainly used for reference counting.

matchsize Size of the data structure used for the configuration of the match. Required if nonzero
for kernels > 2.6.17 - see Listing 3.1 for an example.

This struct will be passed to int ipt_register_match(struct ipt_match *match) during initial-
ization of the module and void ipt_unregister_match(struct ipt_match #*match) during cleanup
when unloading the module. Listing 3.1 shows an example for this struct from the implementation
of the match. As one can see, not every field must be given a value, only those which are really
used.

Userspace < Kernel Communication

One may register new socket options for communication between a match (or netfilter modules
in general) and userspace. This is done by setting up a struct nf_sockopt_ops in a way that is
similar to the one for struct ipt_match from 3.3.1 by defining ranges for the options and corre-
sponding get and set function pointers. Like before, this struct then gets registered using int

nf_register_sockopt (struct nf_sockopt_ops *opts) and unregistered by void nf_unregister_sockopt

(struct nf_sockopt_ops *opts). After loading the module, the defined socket options may be
modified or read from userspace by calls to setsockopt () or getsockopt(), respectively, on a raw
socket.

10



3.3 A New Match

3.3.2 Shared Library

A shared library must be provided to use a new match with the iptables command. The name
of the match is being passed to iptables by the -m name command line option. iptables then
searches for a library called 1ibipt_name.so in its library directory and opens it. The shared li-
brary must execute void register_match(struct iptables_match *me) during initialization to reg-
ister the match. A struct iptables_match mainly contains the following fields:

name The name of the match function - it should match the library and module name.
help Function printing the options synopsis.

init May be used to initialize extra space of the ipt_entry_match structure which will be available
in the kernel as well and is used to pass the options to the module.

parse This function gets called when an unknown command line option is seen and should return
nonzero if the option was for this library.

print Creates the match-specific output which appears when iptables -L gets called.
save Reverse of parse: Print the options which were used to create the rule.

extra_opts A struct option[] containing the definition of options for the match. This will be
merged with the current options and passed to getopt_long().

size Like matchsize inside the kernel module, but should be set using the IPT_ALIGN() macro to
ensure correct alignment.

The association between the kernel module and the match gets established through the name fields
of the struct iptables_match of the library and the struct ipt_match of the module. If the module
shall automatically be loaded when the match is used in a rule, the same name must also be put
into the name of the module (that is, if the match is called “aodvext”, then the module must be
in a file named “ipt_aodvext.ko”).

11



4 Implementation of the Match

In this chapter, an implementation of the netfilter match for AODV extensions will be presented.
This starts with an introduction to the AODV message formats because they will need to be
parsed to some extent when looking for extensions.

The netfilter match consists basically of the following three parts:

e A kernel module which, among other functions, matches AODV messages containing an
extension.

e A shared library needed by the iptables command for accessing the functionality of the
kernel module.

e An interface to interact with the module from userspace when the module is loaded and
participating in an IP Tables rule.

4.1 AODV Message Formats

AODV [3] has four different message formats, but only two of them were relevant in this thesis:
Route requests and replies. The other two are route error messages and route reply acknowledge-
ments. AODYV also supports attaching extensions to routing messages, which is being used in
eg. [1] and [7]. The following sections will give a short description of these message formats.

4.1.1 Route Request (RREQ)

See Table 4.1 for the message format. Route requests have type 1. The hop count ist the number
of hops from the originator IP address (the node which originated the route request) to the node
handling the request, and the destination IP address is the IP address of the destination for which
a route is desired.

0
0123456789
Type \J\R\

2 3
1 23456789012345678901
\D \ U\ Reserved \ Hop Count
RREQ ID
Destination IP Address
Destination Sequence Number
Originator IP Address
Originator Sequence Number

QO)—‘

Table 4.1: Route request (RREQ) message format

4.1.2 Route Reply (RREP)

See Table 4.2 for the message format. Route requests have type 2. The meaning of the other
fields is basically the same as for a route request. Additionally, the lifetime signifies the time (in
milliseconds) for which nodes receiving the route reply consider the route to be valid.

12



4.2 Matching AODV Extensions

0 1 2 3
012345678 90123456789012345678901
Type \R\A\ Reserved \Preﬁx SZ\ Hop Count

Destination IP Address
Destination Sequence Number
Originator IP Address
Lifetime

Table 4.2: Route reply (RREP) message format

Hello Messages

Hello messages may periodically be broadcasted to offer connectivity information to neighbouring
nodes. These messages are route replies with a TTL of 1, a hop count of 0 and the destination
address set to the IP address of the node sending the message. The destination sequence number
is additionally set to the node’s latest sequence number and the lifetime has a defined value as
well, but these two fields are not relevant here.

4.1.3 Extensions

RREQ and RREP messages may have extensions which are attached after the message data. The
format of such extensions is shown in Table 4.3. The type field contains values between 1 and 255,
and the length field constitutes the length of the type-specific data, not including the type and
length fields of the extension, in bytes.

0 1 2 3
01234567890123456789012345678901
] Type \ Length \ type specific data...

Table 4.3: AODV extensions format

4.2 Matching AODV Extensions

The routing messages of AODV are encapsulated in UDP packets which are sent to port 654,
so matching of simple messages is straightforward assuming no other packets are sent to this
port. It becomes a litte more involved when only those packets containing extensions should be
matched. Because extensions may be attached to RREQ and RREP messages which have different
lengths it’s necessary to first find the type of the message. As soon as the type is known, one can
simply check if the length of the packet is more than what would be expected for a packet of the
corresponding type. If this is the case, it’s fairly likely that the packet indeed contains extensions
(if it doesn’t, it’s no valid AODV packet anyway).

4.3 Kernel Module

The module can work in one of two modes: It either matches packets containing AODV extensions
or the match can be turned on and off from userspace without changing the rule. These modes
are mutually exclusive: Only one mode per rule can be used. If the state of the switchable mode
gets changed, this does not have an influence on any rule using the match in the extensions mode,
but it will modify the behaviour of every rule using the match in the switchable mode.

All functionality is implemented in the file ipt_aodvext.c which includes the header file ipt_-
aodvext.h (see Listing 4.1). The header file defines a struct ipt_aodvext_info which is used to
pass configuration information from the shared library to the match: It should be initialized in the

13
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4 Implementation of the Match

#ifndef _IPT_AODVEXT_H
#define _IPT_AODVEXT_H

/* Switch on/off */
#define RS_ON +1
#define RS_OFF -1

/% Number of socket option */
#define RS_SOCKOPTNUM 3141592

struct ipt_aodvext_info {
u_int8_t invert;
u_int8_t aodvext;
u_int8_t switcher;
u_int8_t alldebug;
u_int8_t matchdebug;
intl16_t hello;

};

#endif

Listing 4.1: ipt_aodvext.h header file

library when adding a new rule and may then be accessed from within the int match() function
in the kernel module.

4.3.1 AODV Extensions Mode

In this mode, only packets which presumably contain AODV extensions are matched. The way
this works is as follows:

e Check if the packet could be a valid AODV packet: This is done by partially parsing the
UDP packet and checking that the packet is large enough to even contain an AODV message.

e Get the AODV message type and check if the size is large enough such that it is possible
that AODV extensions have been appended to the message. If this is the case, the packet
matches.

4.3.2 Switchable Mode

This mode may be influenced from userspace through a new socket option (see 3.3.1) which gets
registered by this module. The definition of the socket option number may be found in Listing 4.1.
This way, one can turn matching on and off which may be used by the DSD system to match packets
only if they are needed for piggybacking service discovery information. It works by changing the
internal state of the module: When enabled, the int match() function returns a nonzero value
(which means that the packet matched), when disabled, the function returns 0. The advantage of
this is that the rule does not have to be removed from/inserted into the chain every time, so this
is presumably more efficient.

In addition to the switchability, this mode may also be configured to match every n’th hello
message going through it even when the match was turned off - this could be used by the DSD
system to freely transport service discovery information to it’s neighbours.

4.3.3 Logging

The module also contains some code to provide logging output which can be enabled when adding
a rule to an IP Tables chain. It either prints information for every AODV message which is

14
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4.4 Shared Library for iptables

E: AODV RREQ: SRC: 192.168.0.9; DST: 192.168.0.4; Hopcount: 0; DST-IP:
127.0.0.1; DST-SEQ: 1153906252; ORIG-IP: 192.168.0.9; ORIG-SEQ:
1153906252; RREQ-ID: 1153906252; Has extension: 1
T:AODV RREQ: SRC: 192.168.0.4; DST: 172.16.0.3; Hopcount: 0; DST-IP:
127.0.0.1; DST-SEQ: 1153906339; ORIG-IP: 192.168.0.4; ORIG-SEQ:
1153906339; RREQ-ID: 1153906339; Has extension: 1

:AODV RREQ: SRC: 192.168.0.4; DST: 172.16.0.3; Hopcount: 0; DST-IP:
127.0.0.1; DST-SEQ: 1153906931; ORIG-IP: 192.168.0.4; ORIG-SEQ:
1153906931; RREQ-ID: 1153906931; Has extension: O

E: AODV RREP: SRC: 192.168.0.9; DST: 192.168.0.4; Hopcount: 0; DST-IP:
127.0.0.1; DST-SEQ: 1153907351; ORIG-IP: 192.168.0.9; Lifetime: 65536;
Has extension: 1

3

Listing 4.2: A few examples of the logging output

void __attribute__ ((constructor)) my_init(void)
{

register_match (&aodvext);
}

Listing 4.3: Library initialization from libipt_aodvext.c

processed or only for those that matched. This could be useful when debugging problems on
higher levels of the system.

The output mainly consists of details from the AODV message. An example of such an output
may be found in Listing 4.2. The first letter denotes why the packet matched: E stands for
extension, T for the switchable mode and H for hello message. An A will be printed if all AODV
messages passing through the match shall be logged.

4.4 Shared Library for iptables

As mentioned in 3.3.2, a shared library for the use with iptables must be provided. The netfilter
hacking HOWTO [5] mentioned that the library should contain an _init() function which gets
automatically called when loading the library. This did not work together with 1ibtool, so some
research lead to the solution in Listing 4.3. According to [9], this solves another problem as well:
_init () together with _fini() have been obsoleted and their use could even lead to unpredictable
results.

4.5 Interaction With Module From Userspace

According to 4.3.2, the module registers a new socket option to disable/enable the match when
the match is in switchable mode. The simple code snippet in Listing 4.4 is an example of using
this socket option to first enable and then disable the match again. It finally reads the current
value of the option.

This code can also be encapsulated in a C++ class to make it accessible by object oriented
means from the DSD system which is implemented in C++. See 4.6 for more details on this
integration.

An interesting point about the implementation of this feature is that it was implemented using
a counter: If the match is enabled n times, it must be disabled n times until it is turned off
again. The reason for this is to allow concurrent access from different processes - if one process
disables the match only as many times as it enabled it before, it cannot disable the match for
another process which might still need it to be active. Because this concurrent access could lead

15
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4 Implementation of the Match

int sock,val;
int size = sizeof (int);

if ((sock = socket (AF_INET,SOCK_RAW,IPPROTO_RAW)) =
perror ("socket");

-0

exit (1) ;

}

val = RS_ON;

if (setsockopt (sock, IPPROTO_IP, OPTNUM, &val,sizeof (int())) == -1){
perror ("setsockopt");

}

val = RS_OFF;

if (setsockopt (sock, IPPROTO_IP, OPTNUM, &val,sizeof (int())) == -1){

perror ("setsockopt");

}

if (getsockopt (sock, IPPROTO_IP, OPTNUM, &val,&size) == -1){
perror ("getsockopt");

}

Listing 4.4: Using the socket option

to problems with the counter in the kernel, all write accesses to the counter must be protected by
locking. This can be implemented by defining a mutex using static DECLARE_MUTEX (accept_lock)
in the module and then calling down_interruptible(&accept_lock) to acquire the lock and up(&
accept_lock) to release it again after modifying the counter. This way, a simple reference counter
was implemented, which turned out to be useful later on.

4.6 DSD-SLP Integration

As this match was written for use in the DSD system, it finally had to be integrated into the
SLP daemon which is built on top of the DSD system. See Figure 4.1 for an overview on how the
netfilter match and the SLP daemon work together.

Incoming Outgoing

ipt_aodvext ipt_aodvext
Extensions Switchable RO/F te
QUEUE

INPUT SLP OuTPUT

> Local process

Figure 4.1: Overview on integration of SLP daemon and netfilter match
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4.6 DSD-SLP Integration

iptables -A INPUT -p udp --dport 654 -m aodvext --aodvext -j QUEUE
iptables -A OUTPUT -p udp --dport 654 -m aodvext --switcher -j QUEUE

Listing 4.5: Minimal commands to set up the rules

class AODVRuleSwitcher

{
private:
int sock;
void set(int val);
public:
AODVRuleSwitcher () ;
“AODVRuleSwitcher ();
void enable();
void disable();
int value();
};

Listing 4.6: AODVRuleSwitcher.h with the interface for AODVRuleSwitcher

It basically functions as follows: There are two IP Tables rules - one in the INPUT and one
in the OUTPUT chain. Both rules make use of the match and have QUEUE as their target - see
Listing 4.5 for a minimal variant of these rules. The rule in the INPUT chain matches packets
containing an AODV extension and the one in the OUTPUT chain matches only AODV messages
when activated or if the message is a hello message and these shall also be matched (which is the
default). All the matching packets are queued up for userspace processing and may be read using
libipg. This is the point where the SLP daemon jumps in: It reads the packets from the queue
and processes them. For a detailed description of this processing, see [1].

Simplified, it works as follows: After receiving a service request, the system first checks if the
service information is available locally. If this is the case, the request gets answered immediately.
If not, the system triggers routing messages by sending a packet to a nonexistent address of the
subnet which results in a route request from the AODV routing daemon. This RREQ message
needs to be intercepted to attach the service discovery request: Hence the rule in the OuTpPUT
chain must be activated. After attaching the service discovery extension, the packet is sent to the
network and will be handled like any other route request. However, if a receiving node is running
the SLP daemon and the rule in the INPUT chain is set, the packet gets intercepted and put on the
queue for processing by the SLP daemon because it contained an extension. If no local information
about the requested service is available, the message will just be ignored. Otherwise, the message
is being modified to look as if it was a route request for the local node, which will trigger a route
reply from the AODV routing daemon. Again, this RREP needs to be intercepted for attaching
the information about the service, thus the rule in the OUTPUT chain must be activated.

As one can see, the SLP daemon needs to keep track of service requests and their corresponding,
explicitly or implicitly triggered, routing messages. It does so by maintaining AODVContexts in an
AODVContextStore. Because it also needs the capability to control the rule in the OUTPUT chain,
an AODVRuleSwitcher class was implemented for the userspace < match interaction (see Listing 4.6
for the interface). It basically works as described in 4.5 and therefore makes use of the reference
counting implemented by the match.

Due to the strong correlation between the rule in the OUTPUT chain and the context store (as
long as the store is not empty, outgoing routing messages need to be intercepted), it would have
been quite natural to do the whole integration in the AODVContextStore class: When storing a
new context, the match could be “activated” and when removing a context, it could be “turned
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4 Implementation of the Match

off” again. Unfortunately, the RoutingHandlerImplAQODV: :triggerMessageAndAddContext () method
triggered a message before adding a context to the context store. Because this could result in “lost”
routing messages (the rule may not be activated fast enough), an AODVContextStore: : enableRule ()
method was introduced which is used in the RoutingHandlerImplAODV to activate the rule before

triggering messages.
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5 Results of Measurements

Two series of measurements were done: One with the current DSD-SLP implementation which
was mostly developed in parallel to this thesis and because the results were fairly surprising, a
subset of the measurements was also repeated with the old implementation from [4] and basically
resulted in what was expected.

The measurements were done using 6 notebook computers running Debian 3.1 (Sarge). Five of
them had a 2.0Ghz Mobile Pentium 4 and were equipped with an integrated 11Mbit/s IEEE802.11b
wireless network interface card and were running kernel 2.6.8 while the sixth had a Pentium M
processor with 1.73GHz combined with a 54Mbit/s IEEE802.11g wireless network interface card
(used at 11Mbit/s through configuration) and was running kernel 2.6.11. They were controlled us-
ing ssh over ethernet from a desktop workstation and the measurements were done over a wireless
LAN in ad hoc mode. Because it would be difficult to find a spacial separation of the notebooks
which would have required multihop communication between them, an artificial separation using
IP Tables rules was done: They were only allowed to communicate with their direct neighbours
(and the workstation over ssh), all other traffic was dropped by the default INPUT policy.

All measurement values appearing in this section are the results over a set of 10 tests. The
routing performance was measured by restarting the AODV daemon and issuing an ICMP packet
to the target host afterwards, so the time required for the route discovery could be calculated from
entries in the log of the AODV daemon. The same goes for the service lookup times where the
SLP daemons were restarted after every lookup.

When looking at the graphs (see Figure 5.1 and Figure 5.2), two special things can be observed:
(1) Route discovery over 1 hop always takes Oms and (2) there is a jump in the time taken for
route discovery between 3 and 4 hops. The reason for this lies in the underlying AODV routing
protocol: (1) Direct neighbours always know the route to each other because of the regularly sent
hello messages and (2) because the AODV protocol should use an expanding ring search (see [3,
6.4]), the TTL gets increased over time. Since AODV-UU starts with a TTL of 2, the RREQ over
4 hops only reaches the node with distance 2 from the destination which does not know a route to
the destination. Therefore, AODV waits RING_TRAVERSAL_TIME milliseconds for an RREP (again,
according to [3, 6.4]) and then sends another RREQ with an increased TTL!. The SLP daemon
does not implement the optimization of sending service information to it’s neighbours yet, so there
the jump in the lookup time happens already one hop earlier.

5.1 Old DSD-SLP Implementation

See Figure 5.1 for the results of the series of measurements with the DSD-SLP implementation
from [4]. In contrast to the measurements in [7], debugging output of the SLP daemon was not
turned off, so the results in this thesis were expected to be slightly worse than theirs, which
actually was the case. As one can see, the running SLP daemon which intercepts all AODV
messages imposes a significant delay on the routing itself: The time for a route discovery is often
more than tripled.

This was clearly improved by using the match implemented in this thesis. Because the system
used for these tests was already deprecated, the match was only used in the INPUT chain since
it would not have made much sense to integrate the control of the match in the OUTPUT chain
into an obsolete system. But one can see that the delay is about halved, because only outgoing

1Looking at the AODV-UU (8] source shows that RING_.TRAVERSAL_TIME = 2 - NODE_TRAVERSAL_TIME - (TTL_VALUE +
TIMEOUTBUFFER) with NODE_TRAVERSAL_TIME = 40 and TIMEQUT_BUFFER = 2 - so for a TTL of 2, this results in
320ms which matches the measured results. If no RREP was received, the TTL gets always increased by 2.
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Figure 5.1: Results from experiments with the old SLP implementation

packets get delayed by passing through the SLP daemon - it might therefore be assumed that
the integration of the match would result in similar improvements, which would nearly reduce the
delay to the routing only case.

5.2 Current DSD-SLP Implementation

See Figure 5.2 for the results of the series of measurements with the current DSD-SLP imple-
mentation. One can clearly see why the results were called surprising in 5: There is hardly any
noticeable difference between normal routing, routing with active SLP daemon (where all pack-
ets pass through) and active SLP daemon together with the netfilter match (where packets only
pass through the daemon when necessary). Because it was obvious that these improvements had
nothing to do with the match, the measurements in 5.1 were done to get a clue of the reason since
there were several possibilities:

e This thesis used 2.6.x kernels while [7] used the 2.4.x series. As there were many (performance
related) improvements between these two major releases, this could have made a difference.

e Some minor difference in configuration (IP Tables rules, network settings, environment,
AODV implementation) could have occurred.

e The improved DSD-SLP implementation might have fixed a rather fundamental problem
present in the old implementation.

It seems that the most likely reason is the improved DSD-SLP implementation because the results
with the old implementation fit the ones from [7] pretty well. This gets also supported by the
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Figure 5.2: Results from experiments with the current SLP implementation

improved service lookup times which are only slightly worse than the routing itself.
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6 Users’ guide

The following sections will give a few hints on compiling and using the IP Tables match developed
in this thesis. There will also be some pointers to helpful applications which were used and some
scripts which were developed during the work on this thesis.

6.1 Compilation and Installation

6.1.1 Platform Requirements
The following software setup has been tested to work with the match for compilation and usage:
e GNU/Linux operating system with kernel 2.6.x (really tested with .8, .11, .16 and .17, but
others should work as well whereas newer ones might require minor modifications for the

compilation of the module).

e GCC 3.3/4.0 (other versions should work as well - if the kernel could be/was compiled with
a given version, the match ought to compile, too).

e iptables > 1.2.11 including 1ibipgq.
e libtool > 1.5.6
e autoconf > 2.13

e automake > 1.9.5

AODV-UU > 1.9.1

There might be some additional dependencies coming from the DSD system in which the match
should be used. A few auxiliary requirements might arise when all the provided scripts shall be
used, such as Perlipq (IPTables: :IPv4: : IPQueue) in case of the ipq_aodv_display script.
Developement and testing was mostly done on Debian GNU/Linux 3.1 (Sarge) little endian
systems, but some minor tests showed that the match should also work on big endian machines
and more recent GNU/Linux distributions (namely Debian Testing (Etch)). But basically any
GNU/Linux distribution fulfilling the aforementioned requirements should be usable.

6.1.2 Build Process

The build process is based on the well known so called GNU Autotools (autoconf, automake,
libtool), so the build is quite straightforward. If the configure script et al. do not exist yet,
the autogen.sh script must be executed first. Else or afterwards, respectively, the famous triple
./configure && make && make install should configure, compile and install the module and
the shared library together with the ruletoggle and aodv_gen tools. Because the module and
the match need to be put into system directories, at least the last command must be executed as
root. If the installation shall ever be undone, an uninstall target was created in the Makefile.
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6.2 Usage

Chain INPUT (policy ACCEPT)

target prot opt source destination

QUEUE udp -- anywhere anywhere udp dpt:654
AODV extensions

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

QUEUE udp -- anywhere anywhere udp dpt:654
ruleswitcher: O hello: 0’th

Listing 6.1: Output of iptables -L for rules from Listing 4.5

6.2 Usage

The user interface to the match is the normal iptables program which got extended by the
shared library. Calling iptables with the -m aodvext option will make it load the library and
the match-module. iptables then also accepts other options for configuring the match which will
be described in the next section.

6.2.1 iptables-Options

The following options are available:
--invert Invert the result, for example match only packets without extension.

--aodvext Match only packets with extensions - the default mode. See 4.3.1 for details on this
mode.

--switcher Allow userspace to turn on/off the match using the socket option. See 4.3.2 for details
on this mode.

--hello <n> Match every n’th Hello-message if in switcher-mode. The default is 0 which matches
all Hello messages, -1 would turn off matching of Hello messages.

--alldebug Print information on every processed packet into the kernel log. See 4.3.3 for details.

--matchdebug Similar to --alldebug, but this only prints information on packets that actually
matched.

The options -—aodvext and --switcher can not be combined because they decide in which mode
the match shall run. If this is done nevertheless, the last appearance of one of these options will
be used. Calling iptables -m aodvext -h will give a short summary of the available options
for the aodvext match. See Listing 4.5 for a short example of the usage. The use of these two
rules would result in the iptables -L output of Listing 6.1 which shows the mode the match
operates in for the rule, the reference counter of the switcher mode and if Hello messages shall be
matched. If one of the debug options had been specified, this would be indicated by an ad or md
flag, respectively.

Because the match only works with UDP packets, it always requires the -p udp option. If the
call to iptables fails (for example with iptables: Invalid argument), a look at the output
of dmesg might be helpful.
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6.3 Useful Tools

Because testing of the match and the measurements involved several computers (up to 6 note-
books), one may need some tools to work with them efficiently. In the following sections, a couple
of useful scripts and tools for this task will be presented.

6.3.1 ClusterSSH

ClusterSSH! allows one to control multiple ssh sessions at the same time. It opens a xterm for
each session and distributes them on the screen, allowing the interaction with individual terminals
if desired. The hosts may be given on the command line or added at runtime. A configuration
file is also supported which allows the definition of so called clusters - this is useful if one wants
to connect to different sets of hosts.

6.3.2 Synergy

Synergy? allows sharing of a single keyboard and mouse between multiple computers with different
operating systems, each with its own display. This way one can “simulate” a multihead setup when
using two or more computers or notebooks. Synergy uses a configuration file to define the setup
and may also be used over a port forwarded by ssh.

6.3.3 Scripts and Tools

During the developpement of the match, a set of scripts and tools have been written to ease the
work. They are not very generic, but some of them use a simple configuration file where a layout
for the desired network can be defined. The following sections will provide some information on
the most useful scripts and their usage. Most of the scripts will use ssh to connect to hosts defined
in the configuration file, so it might be useful to set up public key authentication to save typing the
password for every command executed (because the scripts use different users, this is necessary for
root and the user used for testing (whose name currently is often hardcoded into the scripts...)).
Many scripts also expect the configuration file to be in the same directory as themselves with
the name hosts, but some may accept the path to the configuration file as their first or second
argument or even with a ——config option. Some scripts actually assume that required files may
be found under the ~/voicehoc/ directory structure. The best way if something does not work
as it should is probably to have a short look at the scripts themselves - they are not very complex
and written in Bash or Perl.

Another good idea is the setup of sudo - because it is often necessary to execute commands as
root while working as another user, one can also save some password typing by adding a line like
username ALL=(ALL) ALL to /etc/sudoers using the visudo command as root. Afterwards, if
one needs to execute a command as root, one simply prefixes it by sudo - it will then ask for the
users password (which only happens about once every 15 minutes, depending on configuration)
and executes the command as root. Some of the scripts presented below actually do make use of
sudo, so this might be needed for them to work properly.

Configuration File

See Listing 6.2 for an example of the configuration file. The lines at the top define different
systems and their MAC addresses while the admin line defines the system which will be used for
administration and therefore is allowed ssh access. connection signifies the network and prefix
will be used as a prefix for the addresses in the wireless network - the last byte is taken from
the number in the hostname (which is an evidence for the claim that these scripts are not very
generic).

Thttp://clusterssh.sourceforge.net/
’http://synergy2.sourceforge.net/
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6.3 Useful Tools

wllap11=00:02:2D:7B:89:B4

wllap14=00:02:2D:BA:11:93

wllap15=00:02:2D:BA:11:73

wllap6=00:02:2D:7B:88:D8

wllap13=00:02:2D:7B:89:6F

wllap10=00:13:CE:8C:78:D5

admin=172.25.3.244
connection=wllapll-wllapl4-wllapl5-wllap6-wllapl3-wllap10
prefix=192.168.0

Listing 6.2: Configuration file for some scripts

aodvadmin

This script will connect to all the hosts defined in the config file to control the AODV daemon.
Depending on the name this script gets called with (by using for example symbolic links), it does
different things:

aodvstop Send a kill -9 to the aodvd instance thereby killing it.
aodvstart Start the aodvd daemon.

aodvrestart Kill and immediately start the AODV daemon again. Useful to clear routes when
measuring the route discovery performance.

ipq_aodv_display

Because running the complete DSD-SLP system when testing the match would have been a little
inefficient, the ipq-aodv_display script has been written. Since it accesses libipq, it must
be run as root and the IPTables::IPv4::IPQueue Perl extension must be available. It reads
packets from the kernel queue like the DSD-SLP daemon would, and parses them. Some of the
information in the packet then gets displayed and the —--printcontent option would cause the
script to also print a hexdump of the content of extensions. An example of the output generated
by this script may be found in Listing 6.3. The packet which is being displayed in this output is
not a “real” AODV packet, but one generated by the aodv_gen program which will be explained
later. Because the script returns the packets using the NF_ACCEPT verdict to IP Tables, they do
not get lost (DSD-SLP does the same).

rulesetup

Since it would be tedious to connect to every host for setting up the IP Tables rules by hand,
the rulesetup script was implemented: It does this and also accepts some options to control the
rules:

--config=<file> Path to the configuration file.

--clear Clear the IP Tables rules on all hosts and also reset the default policy (which is useful
since it got set to DROP on the INPUT chain - which efficiently locks one out of a machine
when simply executing iptables -F...).

--noaodv Do not set rules involving the AODV protocol.

--oldin Use the old INPUT chain rules which match all UDP packets on port 654 and put them
into the queue.

--oldout Same as --oldin, but for the OUTPUT chain.

--hello=<n> Match every n’th Hello message.
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Received a new packet with id 3832468768 from NF_IP_LOCAL_IN-hook:
Datalength: 56
Trying to parse IP-header:
Header length: 5 words
TTL: 64; Protocol: 11 (udp)
Source address: 127.0.0.1
Destination address: 127.0.0.1
Trying to parse UDP-header:
Souceport: 32780 Destinationport: 654
Length of UDP-Packet: 36
Trying to parse AODV-packet:
Type: 1 (RREQ)
Hopcount: O
RREQ-ID: 1154334716
Destination address: 127.0.0.1, sequence number:
1154334716
Originator address: 127.0.0.1, sequence number:
1154334716
Packet seems to contain (an) AODV-extension(s)! Try to
parse. ..
Extension O is of type 129 and has length 2
00 00

Listing 6.3: Example output of ipgq_aodv_display --printcontent

--debug Use the LOG target to log packets before they pass through a relevant rule.

--matchdebug Use the internal logging output to log information on all AODV messages which
matched.

--alldebug Same as --matchdebug, but log all packets passing through the match.

Because only neighbouring nodes should be capable to communicate with each other, the script
sets up rules such that only packets coming from the MAC address of a neighbour are accepted,
everything else just gets dropped. An example of the rules set on a host in the middle (therefore
having two neighbours) can be found in Listing 6.4. One can see that eth0 is used for adminis-
tration (port 22 is open for the administrative host) and that the main communication happens
over ethl, which is the wireless interface.

slprunner

This script first changes to the DSD-SLP daemon directory and then creates another script to
execute the daemon. It also takes the default configuration file and adapts it to the subnetwork
the script is running in (that is, it changes the pool address range, removes some unnecessary
entries and updates timeouts). Finally, it executes sudo to run the created script as root. Now
service registrations and lookups are possible.

wlansetup

The wlansetup script sets up the wireless lan using iwconfig and ifconfig. It sets the ESSID
to “aodvext”, activates Ad Hoc mode, turns off encryption, configures the channel to be 10 and
sets the rate to 11Mbit/s. Afterwards, it sets the IP address to one of the 192.168.0.0/24 subnet
by taking the last byte from numbers in the hostname (which therefore should be of the form
wllapll with 11 being unique for the given network).

Running this script on all available hosts will result in a wireless Ad Hoc network with identical
settings on all hosts, but different and unique IP addresses.
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Chain INPUT (policy DROP 6 packets, 1144 bytes)

pkts bytes target prot opt in out source destination
0 0 ACCEPT tcp -- eth0 =x 172.25.3.244 0.0.0.0/0 tcp spt:22
430 53252 ACCEPT tcp -- ethO = 172.25.3.244 0.0.0.0/0 tcp dpt:22
0 0 ACCEPT all -- 1o * 0.0.0.0/0 0.0.0.0/0
0 0 QUEUE udp -- * * 0.0.0.0/0 0.0.0.0/0 udp dpt:654 MAC 00:02:2
D:7B:89:B4 AODV extensions
0 0 QUEUE udp -- * * 0.0.0.0/0 0.0.0.0/0 udp dpt:654 MAC 00:13:
CE:8C:78:D5 AODV extensions
0 0 ACCEPT all -- ethl = 0.0.0.0/0 0.0.0.0/0 MAC 00:02:2D:7B:89:B4
0 0 ACCEPT all -- ethl =« 0.0.0.0/0 0.0.0.0/0 MAC 00:13:CE:8C:78:D5
0 0 ACCEPT all -- ethl = 192.168.0.14 255.255.255.255
Chain FORWARD (policy ACCEPT O packets, O bytes)
pkts bytes target prot opt in out source destination
Chain OUTPUT (policy ACCEPT 128 packets, 20204 bytes)
pkts bytes target prot opt in out source destination
342 64827 ACCEPT tcp -- % eth0 0.0.0.0/0 172.25.3.244 tcp spt:22
0 0 ACCEPT tcp -- = eth0 0.0.0.0/0 172.25.3.244 tcp dpt:22
0 0 ACCEPT all -- = lo 0.0.0.0/0 0.0.0.0/0
0 0 QUEUE udp -- * * 0.0.0.0/0 0.0.0.0/0 udp dpt:654

ruleswitcher: O hello: 0’th

Listing 6.4: Rules created by a call to rulesetup and displayed by iptables -L -n -v

ruletoggle

This simple program may be used to toggle the rule when in switching mode (see 4.3.2 for details).
If called with a numeric, > 0 argument, it will set the reference counter to the given value. It may
also be used as a working example for using the socket option.

aodv_gen

Because the normal AODV routing messages do not contain extensions and the use of the DSD-
SLP daemon would have been a little too complex for testing of the match, a simple program which
is capable of creating sample AODV messages with or without extensions has been written. It
basically sends packets looking like real AODV messages but with fake content to any given host.
It takes some options and is used as follows: aodv_gen [options] <receiver> where receiver is
the IP address or hostname of the host to which the packet should be sent and for options, the
following values are possible:

--next <number of extensions to send> The number of extensions that shall be attached.
Extensions are always 2 Bytes long containing 0’s as value (which results in 32Bit words
which were easy to generate, therefore more “complex” extensions are not possible - but this
was enough for testing). Default is 0.

--rreq Generate route request messages. The default if no option for the type was given.
--rrep Generate route reply messages.

--type <type to give to extensions> The type for extensions defaults to 129, with this op-
tion this may be changed to an arbitraty value.

--port <port to send packet to, default 654> The port where the packet should be sent

to. 654 is the default AODV port, but for testing the use of another port might be useful
(to for example not mess too much with a running AODV daemon...).

Others

There are a few more scripts which might be useful, but are not that interesting;:
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buildAll Compiles and installs all programs under ~/voicehoc/ which are necessary to test the
match as well as the DSD-SLP daemon (it does not compile/install AODV or OpenSLP’s
slptool which are also required - but this must only be done once while the other programs
change more often because they may even be work in progress).

pingtest Reads the configuration file and tries to send an ICMP message to all hosts in the
configuration file. May be used to test if the IP Tables rules cleanly separate the nodes and
if the connections get established after starting the AODV daemon.

sourcesync Uses rsync to synchronize a directory on the administrative machine to all the nodes
used for testing. It supports the following options:
--config Where the configuration file with the hosts may be found.
—--src Source directory on the local system. Default is $HOME/voicehoc/benchmarksources/.
--dst Destination directory on the remote system. Default is /home/msmeasure/voicehoc/.

--remove Remove files which do not exist locally - useful when synchronizing fresh sources
as it removes the files and directories created during compilation so one may start with
fresh sources again.

syslogfilter Reads the system log file from stdin and parses it to some extent, colorizing and
compressing lines created by the IP Tables LOG target entries from the rulesetup script
when run with the --debug option.

syslogaodvfilter Similar to syslogfilter, but suited to the --matchdebug or --alldebug
options of the match and rulesetup.
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7 Conclusion and Future Work

The measurements in 5.1 clearly show that the implementation of a netfilter match can make a
difference in performance when not all packets need to pass through userspace anymore. On the
other hand, the results from 5.2 with the current SLP implementation imply that the main problem
causing bad performance was not at the lower levels where packets got passed around between
kernel- and userspace, but rather in the implementation in userspace. This demonstrates once more
that sometimes high level improvements might be more efficient than low level optimizations.

One question which could not be answered by the measurements is how this would look in a
more resource constrained environment where the nodes for example are PDA’s - they have much
less CPU power than 2Ghz Pentium 4 CPU’s and power consumption is much more of an issue
than with notebook computers. Therefore the use of a netfilter match which reduces the amount
of work could actually make a difference.

7.1 Future Development

One possible extension could be the avoidance of passing packets to userspace: A generic interface
like Netlink could be used to send information to the kernel for publishing and to receive requests
from incoming packets. This way the complete packet modifications could be done inside the
kernel and userspace would not have to be concerned about the exact packet format nor handling
of actual packets. But since the measurements with the current SLP implementation show that
the performance does not suffer significantly from passing around the packets, the performance
gain from this might be negligible.

Something which would be very useful is a generic testbed for testing and measuring the perfor-
mance of the implementation. This could be something like the APE (Ad hoc Protocol Evaluation)
testbed! but with a stronger adaptation to the given environment. Some of the scripts developed
in this thesis might be used as a start, but they still lack a lot of genericity.

Thttp://apetestbed.sourceforge.net/, last updated in 2002, so probably not really active anymore
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