
User’s Guide

Universe Type System for Scala

Manfred Stock

January 31, 2008

Contents

1 Introduction 1

2 Universe Type System 2
2.1 Annotations . 2
2.2 Types . 2
2.3 Methods . 3
2.4 Viewpoint Adaptation . 4
2.5 Subtyping . 4
2.6 Generics . 4
2.7 Casts and Instanceof . 4
2.8 Dynamic Checks . 4

3 Installation of the Plugins 5
3.1 Requirements . 5
3.2 Binary . 5
3.3 Scala Bazaars . 6
3.4 Source . 6

4 Usage 6
4.1 Annotations . 7
4.2 scalac . 8
4.3 Plugin Options . 8

4.3.1 Common Options . 8
4.3.2 Options for the Static Type Checks . 9
4.3.3 Options for the Addition of Runtime Checks 9

4.4 ant . 9
4.5 Running the Compiled Application . 9

References 12

1 Introduction

The Universe Type System [3] is used to control aliasing and dependencies in object-oriented
programs. Its underlying basis is the concept of ownership where each object is owned by at most
one owner object. The objects are organized into contexts, which are sets of objects with the same
owner. Objects without owner are grouped into the so called root context, which also forms the

1

2 Universe Type System

root of the tree of contexts of a program execution. See Figure 1 for an example of such a tree.
When enforcing the so-called owner-as-modifier discipline, the owner must have control over the
modification of its objects.

rep

this

rep rep

rep rep

peer

peer

peer

any

any

Figure 1: Ownership relations in an object structure.

This guide serves as a quick reference to the Universe type system by providing an informal
overview. It also explains the installation of the Universe type system plugins for Scala and their
usage. The content of this guide is inspired by the quick-reference of the Universe type system
implementation for JML [4].

2 Universe Type System

In Scala, every value is an object, it would therefore be possible to record an owner for every
value. However, value types such as Boolean, Int, etc. are immutable. These types are therefore
handled slightly different: In the static type checks, their default ownership modifier is any instead
of peer, and at runtime, instances of immutable types do not get an owner assigned. They are
not subject to the additional runtime checks, either.

2.1 Annotations

Ownership modifiers express object ownership relative to the current receiver object this. The
implementation of ownership modifiers for Scala uses its support for annotations on types which
allows the extension of Scala’s normal type system.

2.2 Types

Figure 2 shows the ownership modifiers which are used in this implementation of the Universe
type system. It also displays the relationship between the modifiers which could be seen as some
kind of a subtype relation between ownership modifiers. Main modifiers can be used anywhere in
the type while some is only allowed in type arguments. The internal modifiers cannot be written

2

2.3 Methods

down in the program, they are only used internally by the type checker. They may nevertheless
become visible in error messages and warnings from the plugins. The meaning of the modifiers is
as follows:

any An any reference may point to arbitrary contexts. It is read-only when the owner-as-modifier
property is being enforced.

some This modifier can only be used in type arguments. It is similar to any, but more restrictive
except for subtyping, where some is more flexible.

lost The internal lost modifier indicates that ownership information got lost, for example during
a viewpoint adaptation.

rep A rep reference expresses that an object is owned by this.

peer A peer reference expresses that the referenced object has the same owner as the this object.

this This internal modifier is only used as a main modifier for the current object this in order
to distinguish accesses through this from other accesses.

 any

 some

 lost

 rep peer

 this

Main modifiers Internal modifiers

Figure 2: Subuniversing of ownership modifiers.

2.3 Methods

To indicate that a certain method does not have any side effects it can be marked as pure.
Such methods do not modify any existing objects and may therefore be called on objects in
arbitrary contexts, even when the optional owner-as-modifier property of the Universe type system
is enforced.

3

2 Universe Type System

2.4 Viewpoint Adaptation

The ownership expressed by ownership modifiers is always relative to this, hence it must be
adapted if this viewpoint changes. This is for example the case for a field access like x.f: Here
the types and especially the ownership modifiers of both x and f need to be taken into account
when determining the owner, i.e. the type, of the referenced object:

• If x is this, then the ownership modifier of x.f (i.e. this.f) is the same as the one of f since
it already is relative to x, which is this in this case.

• If the types of both references are peer types, this means that the object referenced by x

has the same owner as this. As f is a peer reference of x and therefore has the same owner
as x, the type of x.f must consequently be peer, too.

• If x has a rep type and f a peer type, then x.f yields a rep type. This is because x is owned
by this and since f is of a peer type when seen from x, it has the same owner as x, which
is this.

• If the type of f is an any type, the expression x.f also yields an any type since the owner of
f is statically unknown.

• In all other cases, ownership information got lost, therefore the type of x.f is a lost type.

Method calls are handled by the same rules. This is especially relevant for Scala where every field
access gets mapped to a call of a getter or setter method on the receiver object.

2.5 Subtyping

The subtype relation of the Universe type system extends the subtype relation of Scala by using the
additional ownership modifiers. If two types are subtypes in Scala and have the same ownership
modifiers, they are also subtypes in the Universe type system. Since there is also a subuniverse
relationship between ownership modifiers as depicted in Figure 2, an additional subtype relation
is possible: A peer or rep type, for example, is a subtype of the corresponding any type since it
contains more specific ownership information.

2.6 Generics

Scala and the implementation of the Universe type system for Scala both support generics. The
general ideas concerning viewpoint adaptation and subtyping are the same as mentioned above
for non-generic types, but obviously more involved. See for example [2] for a detailed description
of generics in the context of the Universe type system.

Scala also supports variance annotations of type parameters of generic classes. This is currently
not supported in this implementation of the Universe type system.

2.7 Casts and Instanceof

If a read-write reference was passed out as a read-only reference, it may be required to cast it back
down later in order to modify the referenced object. This cast operation is also supported by the
implementation of the Universe type system. It is implemented by adding an additional check to
calls of Scala’s asInstanceOf[T] function. If the cast fails, a ClassCastException is thrown. Calls
to isInstanceOf[T] are also modified in order to consider ownership.

2.8 Dynamic Checks

Typecasts and instanceof operations require additional checks and information about the owner
of objects at runtime. Therefore some instructions for the runtime checks and the maintenance of
the required information are added during the compilation of programs.

4

3 Installation of the Plugins

The following subsections assume that the environment variable $SCALA HOME refers to the direc-
tory where the Scala installation resides. This variable is therefore synonymous to the $JAVA HOME
environment variable from Java. It is further assumed that the variable $UTS HOME points to the
directory which contains the Java archive files of the plugins and the accompanying libraries.

3.1 Requirements

The plugins were developed and tested with Scala 2.6.1. Later versions might work as well but as
the plugins are highly dependent on the data structures used in the compiler, subtle breakage can
occur. Some classes make use of Java’s generics, therefore a version of Java supporting them is
also needed, i.e. Java ≥ 1.5. The plugins were developed and tested with Java 1.5 and 1.6. When
installing the source version of the plugins, Ant ≥ 1.6.3 is necessary for the build.

3.2 Binary

A binary distribution of the Universe type system plugins contains several Java archive files,
namely the following:

uts-static.jar This file contains the plugin for the static Universe type system checks.

uts-runtime.jar This file contains the plugin which adds runtime checks to the compiled pro-
grams.

uts-annotations.jar This file provides the annotation classes. It is required when compiling or
executing programs which were annotated with ownership modifiers.

uts-rt-sc.jar The support classes for the runtime checks, implemented in Scala. This file’s
classes must be available in the class path when the runtime checks are generated for the
Scala implementation of the runtime support library.

uts-rt-mj.jar The support classes for the runtime checks, implemented in Java by [5], and part
of MultiJava [7]. This file’s classes must be available in the class path when the runtime
checks are generated for the Java implementation of the runtime support library. Doing this
results in interoperability with the Universe type system implementation for JML [3, 5].

uts-scala-src.jar The source code for the plugins, the annotations, and the runtime libraries.

Both plugin archives contain all classes required for the plugins themselves. The annotations
must always be available in the class path because the input to the compiler may contain annota-
tions and since the generated class files are decorated with even more annotations.

For the runtime support libraries this is similar. However, as it is possible to choose the library
which should be used during the additional runtime checks with a compile-time option, it suffices
if the library matching the chosen target library is available in the class path.

As these libraries must be available whenever a program compiled with the Universe type system
plugins is to be executed, they must be shipped together with the program.

The installation of the above files is straightforward: The plugins ought to be copied to a
directory where they are easy to find and access, for example $SCALA HOME/plugins/uts. If
the plugins should always be used automatically1, they may also be copied to the directory
$SCALA HOME/misc/scala-devel/plugins.

Scala adds all libraries in $SCALA HOME/lib to the class path, therefore copying the other Java
archive files (except for the one with the source code) into this directory avoids the need to
explicitly add them each time. The source code is not required in order to use the plugins.

1This is not recommended, as they cannot cope with every Scala construct yet.

5

4 Usage

<overrideuniverse >

<components >

<simpleuniverse >

<name>uts-scala </name>

5 <location ><!-- URL to the uts-scala Scala bazaar --></location >

</simpleuniverse >

<simpleuniverse >

<name>scala-dev </name>

<location >http :// scala-webapps.epfl.ch/sbaz/scala-dev </location >

10 </simpleuniverse >

</components >

</overrideuniverse >

Listing 1: Bazaar descriptor for scala-devel and the Universe type system plugins.

3.3 Scala Bazaars

Scala Bazaars [6] is a package management system for Scala. By using the sbaz tool it is possible
to install, update, and remove Scala extensions like libraries and plugins. If the URL of a Scala
Bazaar providing a package for the Universe type system plugins is known, a universe descriptor
like the one in Listing 1 can be stored in a file. Passing it to sbaz setuniverse <file> will
then change the universe sbaz uses and update the list of available packages. The descriptor also
contains the scala-devel universe which provides final releases of the Scala distribution and some
third-party software. Now executing sbaz available should yield a list of the available packages
which also contains the uts-scala meta-package. This package depends on all the other packages
related to the Universe type system plugins, i.e. the plugins, the annotations, the runtime support
libraries, the API documentation, and the source code.

In order to install the plugins, it suffices to execute sbaz install uts-scala which will down-
load and install all the packages into the local managed directory. This is usually the directory
$SCALA HOME. Removal of a package is possible using the sbaz remove <package-name> com-
mand. Unfortunately, this can be a little tedious as one can only remove a package if no other
package depends on it. The command sbaz installed prints the list of installed packages.

3.4 Source

The build process of the plugins is based on Apache Ant. Since the build script depends on
Scala, it checks if $SCALA HOME is defined and if yes, this directory is used to look for the Scala
compiler. In case this environment variable is not set, it will try to use the Scala compiler in
${user.home}/sbaz.

After setting up the environment, it suffices to call ant in the top-level directory of the source
tree, i.e. where the file build.xml resides. This builds the binary distribution mentioned in
Section 3.2 except for the Java archive with the source code. The resulting files can be found in
the target directory and may be installed accordingly.

The build script also supports a run.tests target which may be used to execute a set of test
cases. Most of these tests compile a program using the plugins. The programs contain a known
number of errors and warnings: A test is therefore successful if the number of detected errors
matches the number of expected errors.

4 Usage

The following subsections explain how the plugins are actually used. This usually consists of
three distinct actions: (1) At the beginning, a program gets manually decorated with ownership
modifiers. In many cases, however, ownership modifiers do not need to be specified explicitly: They

6

4.1 Annotations

package utsdemo

// Import the annotations

import ch.ethz.inf.sct.uts.annotation._

5

// Application which creates a new instance of class C

object Main extends Application {

new (C @rep)

}

10

// An example class which uses ownership modifiers

class C {

// Use the annotations

val a = new (Cls @rep)

15 var b : Cls @any = new (Cls @rep)

val c = new (Cls @peer)

b = c

// More complex example with annotations on the type arguments ,

20 // the type and the constructor argument.

val d = new (Generic[Cls @any] @rep)(new (Cls @rep))

b = d.field

// Print a message to say that initialization is done

25 println("Done.")

}

class Cls

30 class Generic[T <: Any @any](a: T) {

val field = a

}

Listing 2: Example program which uses ownership modifier annotations.

can usually either be inferred automatically or the default of peer is acceptable. The program
can subsequently be (2) compiled and (3) run.

4.1 Annotations

As mentioned in Section 2.1 ownership modifiers are implemented by using Scala’s annotations on
types. The classes of the implementation reside in the ch.ethz.inf.sct.uts.annotation package.
It is provided in the uts-annotations.jar file which therefore must be on the class path when
using the annotations. For an example of the usage, see Listing 2: After importing the complete
contents of the package, the ownership modifier annotations may be used by writing them on the
right hand side of a type. This is a minor syntactical difference from other work (e.g. [3, 2]) that
may require some adaption. Unfortunately, this can also make certain expressions hard to read.
It also requires many brackets, as can be seen in the example. Some of them may be omitted,
though, but it is better to always write them down.

One of the trickier examples where annotations are used can be seen in the definition of field
d of class C: In this case, a new Generic[Cls @any] instance is created, and the reference to this
instance is a rep reference. The constructor gets called with a rep reference to an instance of class
Cls.

In order to indicate to the plugins that a certain method may be considered as pure, a @pure

annotation is also available. However, using this annotation does not result in any purity check

7

4 Usage

of the annotated method. It is the programmer’s responsibility to make sure there are no side
effects.

4.2 scalac

To employ a plugin during the compilation with scalac, one can use the -Xplugin:<path to
plugin.jar> option. This option may be used several times, i.e. once for each plugin which
should be loaded. Alternatively one could also provide the option -Xpluginsdir <path> with a
path to the directory containing the plugins. If no further options are given, scalac will print out
a list of available command line arguments for the scalac compiler and the selected plugins.

In addition to the above options, it is necessary to pass -Xplug-types and -Ygenerics to
scalac in order to make it process annotations on types and to enable support for Java’s generics2,
respectively. If the uts-annotations.jar file was not copied to $SCALA HOME/lib, it is also
required to pass the path to this Java archive in the -cp option. The same applies for the
uts-rt-sc.jar and uts-rt-mj.jar files, depending on the target library of the runtime checks.
Putting it all together, this yields a command like

$ scalac -cp $UTS HOME/uts-rt-sc.jar:$UTS HOME/uts-annotations.jar \
-Xpluginsdir $UTS HOME -Xplug-types -Ygenerics <sourcefiles>

for the compilation using the Universe type system plugins.

4.3 Plugin Options

The plugins provide several options which can be used during compilation. Most of these op-
tions change the verbosity of the plugins, but some of them also affect their behavior. Options
for a compiler plugin are specified by passing -P:<plugin-name>:<option-value> to the Scala
compiler. There are two possible values for <plugin-name> when using the Universe type system
plugins: uts-static for the plugin which checks the type rules statically and uts-runtime for
the plugin which adds runtime checks.

4.3.1 Common Options

All those options related to verbosity are available in both plugins, as well as one option which
affects the behavior.

-P:<plugin-name>:[no]browser Display a Swing-based browser which shows the abstract syntax
tree after it has been processed by the plugin.

-P:<plugin-name>:[no]ast Print the abstract syntax tree after processing it in the plugin. This
uses the toString: String method of the tree.

-P:<plugin-name>:loglevel=<level> The plugins contain a logging facility which supports dif-
ferent log levels. There are five levels, in ascending order of severity: debug, info, notice,
warn, and error. Level notice is the default level. The last two levels will also print an
excerpt of the source code which is related to the message. By specifying a certain log level,
all messages below this level are suppressed. Hence, it is not possible to ignore errors.

-P:<plugin-name>:defaults=<class> This option allows to pass the name of a class which
implements the ch.ethz.inf.sct.uts.plugin.common.UTSDefaults trait. These defaults will
then be used during compilation. The option differs from the others in that it affects both
plugins if it is specified for the uts-static plugin only. It is possible, though not recom-
mended, to use different defaults for the two plugins.

2These options will not be present anymore in Scala > 2.6.1 where this is the default.

8

4.4 ant

4.3.2 Options for the Static Type Checks

In addition to the compile-time selectable defaults, the plugin for the static checks also supports the
-P:uts-static:typerules=<typerules> option. This allows to use a different implementation of
the abstract ch.ethz.inf.sct.uts.plugin.staticcheck.TypeRules class, that is, a different variant
of the type rules.

An actual implementation of the type rules may also provide additional options for the compiler.
In the case of the default type-rules implementation, this is the -P:uts-static:oam option which
enables the static checks of the owner-as-modifier property.

4.3.3 Options for the Addition of Runtime Checks

As already mentioned in Section 3.2, there are two different runtime support libraries. The
-P:uts-runtime:runtime=<library> option therefore allows to choose the actual target library
the runtime checks should be generated for. <library> can be either sc for the Scala implemen-
tation, which is the default, or mj for the MultiJava implementation. Both implementations are
largely equivalent, although the Scala implementation lacks the additional implementations of [5]
which for example allow a visualization of the object store.

4.4 ant

Listing 3 shows an example of an Ant build script which makes use of the compiler plugins. It
employs both plugins in order to do the static checks and to add runtime checks to the compiled
classes. In addition it uses a directory layout for the source tree and the target directory which
was adopted from the standard directory layout of Apache Maven [8]. This should ease a future
migration of a project to Maven using the Scala plugin [1] if it ever provides proper support for
Scala’s compiler plugins.

The build script consists of four parts: (1) First, several properties are set. The most important
ones are scala.home and uts.home which point to the directories where Scala and the Universe type
system plugins, respectively, can be found. These properties are set in such a way that they point
to the directories stored in the $SCALA HOME and $UTS HOME environment variables, respectively,
if they are set. If not, they get initialized to a directory below ${user.home}/sbaz. Several other
defaults are also provided using properties, which allows overriding on the command line using
-D<propertyname>=<value>. (2) The class path contains the Scala compiler and library as well
as the runtime support libraries and annotations of the Universe type system plugins. (3) In order
to load the <scalac/> and other Scala related Ant tasks, the <taskdef/> declaration is used. It
includes the file antlib.xml from the Java archive with the Scala compiler. (4) Finally, the build

target compiles the source files using the compiler plugins.
When starting a new application which makes use of the Universe type system, this build script

may serve as a starting point. It provides everything which is required to build the application
and could e.g. be extended to execute unit tests.

4.5 Running the Compiled Application

After the program has been compiled successfully, it can be executed using scala. As mentioned
before, the annotation classes and the runtime support library the runtime checks were built for
must be on the class path. This yields a command like

$ scala -cp $UTS HOME/uts-rt-sc.jar:$UTS HOME/uts-annotations.jar:. \
<main-class>

to execute the main class of a program.
Of course it is also possible to execute the compiled program with Ant. This is especially useful

if Scala’s SUnit is used for the implementation of unit tests as these tests are encapsulated in
Scala applications. Listing 4 shows an Ant build script which includes the script from Listing 3.
It provides an additional run target and a preset definition which declares a new <scala/> task.
This task can be used to execute the main class of a Scala program.

9

4 Usage

<?xml version="1.0" encoding="UTF-8"?>

<project name="Ant Example" default="build">

<property environment="env" />

5 <!-- Set scala.home to local sbaz-managed directory or $ SCALA_HOME if set -->

<condition property="scala.home"

value="${ env.SCALA_HOME}"

else="${ user.home }/sbaz">

<isset property="env.SCALA_HOME" />

10 </condition >

<!-- Use plugins from ${ scala.home }/ plugins/uts or $UTS_HOME if set -->

<condition property="uts.home"

value="${ env.UTS_HOME}"

15 else="${ scala.home }/ plugins/uts">

<isset property="env.UTS_HOME" />

</condition >

<!-- Input and output directories -->

20 <property name="src.main" value="src/main/scala" />

<property name="target" value="target" />

<property name="target.classes" value="${ target }/ classes" />

<!-- Options for the compiler -->

25 <property name="options.plugins"

value="-Xplugin :${ uts.home }/ uts-static.jar -Xplugin :${ uts.home }/

uts-runtime.jar" />

<property name="options.plugin"

value="-P:uts-static:loglevel=info -P:uts-runtime:loglevel=info" />

<property name="options.scalac" value="-Xplug-types -Ygenerics" />

30

<!-- Construct build.classpath for use during compilation -->

<path id="build.classpath">

<pathelement location="${ scala.home }/lib/scala-library.jar" />

<pathelement location="${ scala.home }/lib/scala-compiler.jar" />

35 <!-- Library with runtime support classes -->

<pathelement location="${ uts.home }/ uts-rt-sc.jar" />

<pathelement location="${ uts.home }/ uts-rt-mj.jar" />

<!-- The annotations for the ownership modifiers -->

<pathelement location="${ uts.home }/ uts-annotations.jar" />

40 </path>

<!-- Include ant-support from Scala -->

<taskdef resource="scala/tools/ant/antlib.xml"

classpathref="build.classpath" />

45

<!-- Compile the example program -->

<target name="build" description="Compile the source.">

<echo level="info">Scala location: ${ scala.home}.</echo>

<echo level="info">Plugin location: ${ uts.home}.</echo>

50 <mkdir dir="${ target.classes}" />

<scalac srcdir="${ src.main}"

destdir="${ target.classes}"

classpathref="build.classpath"

addparams="${ options.scalac} ${ options.plugins} ${ options.plugin}"

55 includes="**/* .scala">

</scalac >

</target >

<target name="clean" description="Remove the target directory.">

60 <delete dir="${ target}"

quiet="yes" />

</target >

</project >

Listing 3: Example build.xml for use with Scala and the Universe type system plugins.

10

4.5 Running the Compiled Application

<?xml version="1.0" encoding="UTF-8"?>

<project name="Ant example to run a Scala program" default="run">

<import file="build.xml"/>

5

<!-- Declare some presets for the predefined java task, accessible via

the new scala task -->

<presetdef name="scala">

<java fork="true" failonerror="true" classpathref="build.classpath">

<arg line="${ options.scalac}" />

10 <classpath >

<pathelement location="${ target.classes}"/>

</classpath >

</java>

</presetdef >

15

<!-- Run the main class -->

<target name="run" depends="build">

<scala classname="utsdemo.Main" />

</target >

20 </project >

Listing 4: Example run.xml for use with the build.xml from Listing 3. These files can also be
merged.

11

References

References

[1] David Bernard et al.
Apache Maven Plugin for Scala.
http://www.scala-tools.org/mvnsites/maven-scala-plugin/.

[2] Werner Dietl, Sophia Drossopoulou, and Peter Müller.
Generic Universe Types.
In E. Ernst, editor, European Conference on Object-Oriented Programming (ECOOP), volume

4609 of Lecture Notes in Computer Science, pages 28–53. Springer-Verlag, 2007.

[3] Werner Dietl and Peter Müller.
Universes: Lightweight Ownership for JML.
Journal of Object Technology, 4(8):5–32, 2005.
http://www.jot.fm/issues/issue 2005 10/article1.

[4] Werner Dietl, Peter Müller, and Daniel Schregenberger.
Universe Type System – Quick-Reference.
Swiss Federal Institute of Technology Zurich (ETHZ), Department of Computer Science, Au-

gust 2005.
http://sct.ethz.ch/research/universes/tools/juts-quickref.pdf.

[5] Daniel Schregenberger.
Runtime Checks for the Universe Type System, 2004.
Semester Thesis.

[6] Lex Spoon.
Scala Bazaars.
http://www.lexspoon.org/sbaz/.

[7] The MultiJava Team.
MultiJava.
http://multijava.sourceforge.net/.

[8] Jason van Zyl et al.
Apache Maven.
http://maven.apache.org/.

12

http://www.scala-tools.org/mvnsites/maven-scala-plugin/
http://www.jot.fm/issues/issue_2005_10/article1
http://sct.ethz.ch/research/universes/tools/juts-quickref.pdf
http://www.lexspoon.org/sbaz/
http://multijava.sourceforge.net/
http://maven.apache.org/

	Introduction
	Universe Type System
	Annotations
	Types
	Methods
	Viewpoint Adaptation
	Subtyping
	Generics
	Casts and Instanceof
	Dynamic Checks

	Installation of the Plugins
	Requirements
	Binary
	Scala Bazaars
	Source

	Usage
	Annotations
	scalac
	Plugin Options
	Common Options
	Options for the Static Type Checks
	Options for the Addition of Runtime Checks

	ant
	Running the Compiled Application

	References

